Energy Levels of Light Nuclei A = 19

D.R. Tilley^{a,b}, H.R. Weller^{a,c}, C.M. Cheves^{a,c}, and R.M. Chasteler^{a,c}

Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 Department of Physics, Duke University, Durham, NC 27708-0305

Abstract: Our evaluation of A = 18-19 was published in *Nuclear Physics A595* (1995), p. 1. This version of A = 19 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Figures and the A = 18 evaluation are available elsewhere on this web site.

(References closed as of October 31, 1994)

This work is supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University). (Not observed)

See (83ANZQ).

^{19}B

(Not illustrated)

¹⁹B has been observed in the bombardment of Be by 12 MeV/A ⁵⁶Fe ions (84MU27) and in the fragmentation of 44 MeV/A ⁴⁰Ar (88GU1A) and 55 MeV/A ⁴⁸Ca (91MU19). See also (89DE1X). The mass excess adopted by (93AU05) is 59.360 ± 0.400 MeV.

Shell model predictions for low-lying levels are discussed in (92WA22). See also (89PO1K, 90LO11).

^{19}C

(Fig. 19.4)

¹⁹C has been observed in the 0.8 GeV proton bombardment of thorium (86VI09, 88WO09) and in the fragmentation of 66 MeV/A argon ions (87GI05) and in 44 MeV/A ²²Ne on ¹⁸¹Ta, and in 112 MeV/A ²⁰Ne on ¹²C (94RA1P, 95OZ1A). The mass excess adopted by (93AU05) is 32.23 ± 0.11 MeV. See also (86VI09, 87GI05, 88WO09, 91OR01). ¹⁹C is then stable with respect to decay into ¹⁸C+n by 0.16 MeV and into ¹⁷C+2n by 4.35 MeV. The half-life was measured to be 30 ± 10 ms (88DU1C) and 45.5 ± 4.0 ms (94RA1P). The total reaction cross section for ¹⁹C on Cu has been measured by (89SA10). See also (87DUZU) and the review of exotic light nuclei of (89DE1X).

Hartree-Fock calculations by (87SA15) predicted ground state properties and spectra of ¹⁹C and other exotic light nuclei. A shell model study is presented in (92WA22). Microscopic predictions of β -decay half lives are discussed in (90ST08). The relative yields of carbon isotopes produced in the fragmentation of ⁸⁴Kr are calculated in (87SN1A). See also the study by (92LA13) of the influence of separation energy on the radius of neutron rich nuclei.

^{19}N

(Fig. 19.4)

¹⁹N has been produced in a number of different multinucleon transfer reactions (83AJ01, 87AJ02), and these results lead to an adopted value (93AU05) of 15.860 \pm 0.016 MeV for the mass excess. ¹⁹N is then stable with respect to decay into ¹⁸N + n by 5.33 MeV. The half-life has been measured to be $0.32 \pm 0.10 \sec (86DU07)$, $0.21^{+0.2}_{-0.1} \sec (88MU08)$, $0.235 \pm 0.032 \sec (88SA04)$, $0.300 \pm 0.080 \sec (88DU1C)$, $0.329 \pm 0.019 \sec (91RE02)$. The neutron emission probability has been measured to be $P_n = 33^{+34}_{-11}$ %(88MU08) and $P_n = 62.4 \pm 2.6$ % (91RE02).

Excited states in ¹⁹N observed in ¹⁸O(¹⁸O, ¹⁷F)¹⁹N have been reported by (89CA25) at $E_x = 1.11 \pm 0.02$, 1.65 ± 0.02 , 2.54 ± 0.03 , 3.47 ± 0.03 , and 4.18 ± 0.02 MeV. See also (87AJ02, 88DU1C, 95OZ1A).

A discussion of self-consistent calculations for light neutron-rich nuclei is presented in (90LO11). Extensive shell model calculations for observables in exotic light nuclei are discussed in (93PO11). See also the shell model calculations and discussions in (92WA22).

¹⁹O

(Figs. 19.1 and 19.4)

GENERAL: See Table 19.1.

1. ${}^{19}O(\beta^{-}){}^{19}F$ $Q_m = 4.819$

The weighted mean of several half-lives is 26.96 ± 0.07 sec: see (72AJ02, 87AJ02). The decay is complex: see reaction 34 of ¹⁹F and Tables 19.23 and 19.24.

2. ${}^{9}\text{Be}({}^{18}\text{O}, {}^{8}\text{Be}){}^{19}\text{O}$ $Q_{\rm m} = 2.293$

See (83AJ01).

3. ${}^{13}C({}^{7}Li, p){}^{19}O$ $Q_m = 7.412$

States of ¹⁹O reported in this reaction are displayed in Table 19.4.

4. ${}^{17}O(t, p){}^{19}O$ $Q_m = 3.520$

Proton groups corresponding to ¹⁹O states with $E_x \leq 5.6$ MeV and E_{γ} measurements are displayed in Table 19.5.

5. (a) ${}^{18}O(n, \gamma){}^{19}O$ (b) ${}^{18}O(n, n'){}^{18}O$ $E_{b} = 3.957$ $E_{b} = 3.957$ Table 19.1 ^{19}O – General

Reference Description

Nuclear Models

87CH1J	Nucl. struc. calcs. using mixed-config. shell model: effective & surface δ -interactions
88BR11	Semi-empirical effective interactions for the 1s-0d shell
88ET01	Analysis of magnetic dipole transitions between sd-shell states of some $A = 17-39$ nucl.
88WA17	Shell model predictions of energy spectra and wave functions for ${}^{19}N(\beta^{-}){}^{19}O$
89CA25	Multinucleon transfer rxns. at 117 MeV & shell model calc. of ^{17,19} N, ^{19,21} O levels
90SK04	A = 18 nuclei, effective interaction in the sd shell (also calc. $A = 19$ energy spectra)
91MA41	Finite nuclei calculations with realistic potential models
92JI04	Bonn potential used to evaluate energy spectra of some light sd-shell nuclei
92ZH15	Theoretical calculation of neutron induced data of ¹⁹ F and uncertainties of parameters
93PO11	Shell-model calcs. of several properties of exotic light nuclei
	Special States

87CH1J	Nucl. struc. calcs. using mixed-config. shell model: effective & surface δ -interactions
87LI1F	Double- δ & surface- δ interactions and spectra of oxygen isotopes in the sd shell
88WA17	Shell model predictions of energy spectra and wave functions for ${}^{19}N(\beta^-){}^{19}O$
89CA25	Multinucleon transfer rxns. at 117 MeV & shell model calcs. of ^{17,19} N, ^{19,21} O levels
89SA1H	Second class currents & neutrino mass in mirror transitions $(A = 19)$
90SK04	A = 18 nuclei, effective interaction in the sd shell (also calc. $A = 19$ energy spectra)
93NA08	Charge-symmetry-breaking nucleon-nucleon interaction in the 1s0d-shell nuclei

Complex Reactions

Review:	
88JO1B	Heavy ion radioactivity
Other Artic	les:
87BU07	Projectile-like fragments from 20 Ne + 197 Au – counting simultaneously emitted neutrons
87MI27	Measurement of total reaction cross sections of exotic neutron-rich nuclei
89BA2N	Evaluation of hypernucleus production cross-sections in relativistic heavy-ion collisions
89CA25	Multinucleon transfer rxns. at 117 MeV & shell model calc. of ^{17,19} N, ^{19,21} O levels
89SA10	Total cross sections of reactions induced by neutron-rich light nuclei

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	τ or $\Gamma_{\rm c.m.}$ ^b)	Decay	Reactions
0	$\frac{5}{2}^+; \frac{3}{2}$	$[\tau_{1/2} = 26.91 \pm 0.08 \text{ s}]$	β^-	1, 2, 3, 4, 5, 7, 8, 9, 10
0.0960 ± 0.5	$\frac{3}{2}^{+}$	$\tau_{\rm m} = 2.00 \pm 0.07~{\rm ns}$	γ	3, 4, 7, 8, 9, 10
		$[g = -0.48 \pm 0.06]$		
1.4717 ± 0.4	$\frac{1}{2}^{+}$	$\tau_{\rm m}=1.27\pm0.17~\rm ps$	γ	3, 4, 7, 8
2.3715 ± 1.0	$\frac{9}{2}^+$	$\tau_{\rm m} > 3.5~{\rm ps}$	γ	3, 4, 7
2.7790 ± 0.9	$\frac{7}{2}^{+}$	$\tau_{\rm m} = 93 \pm 19~{\rm fs}$	γ	3, 4, 7, 8
3.0674 ± 1.6	$(\frac{3}{2}^+)^{\rm d})$	$\tau_{\rm m} \ge 1 \ {\rm ps}$	γ	3, 4, 7, 8
3.1535 ± 1.7	$\frac{5}{2}^{+}$	$(\tau_{\rm m} \ge 1 \text{ ps})$	γ	3, 4, 7, 8
3.2316 ± 2.3	$\left(\frac{1}{2}, \frac{3}{2}^{-}\right) d$			3, 4, 7, 8
3.9449 ± 1.4 ^c)	$\frac{3}{2}^{-}$		γ	3, 4, 7
4.1093 ± 1.9	$\frac{3}{2}^{+}$	$\Gamma < 15 \ {\rm keV}$		3, 4, 7
4.3281 ± 2.4	$\frac{3}{2}, \frac{5}{2}$	$\Gamma < 15 \ {\rm keV}$		3, 4, 7
4.4025 ± 2.7	$\frac{3}{2} \rightarrow \frac{7}{2}$	$\Gamma < 15 \ {\rm keV}$		3, 4, 7
4.5820 ± 4.6	$\frac{3}{2}^{-}$	$\Gamma = 52 \pm 3 \text{ keV}$	n	3,4,5,7
4.7026 ± 2.7	$\frac{5}{2}^{+}$	$\Gamma < 15~{\rm keV}$		3, 4, 7, 8
4.9683 ± 5.5	$\frac{5}{2}, \frac{7}{2}$			3
5.0070 ± 4.5	$\frac{3}{2}, \frac{5}{2}$	$\Gamma < 15~{\rm keV}$		3, 4, 7
5.0820 ± 5.4	$\frac{1}{2}^{-}$	$\Gamma = 49 \pm 5 \text{ keV}$	n	3, 5
5.1484 ± 3.2	$\geq \frac{5}{2}^+$	$\Gamma = 3.4 \pm 1.0 \ \mathrm{keV}$	n	3,4,5,7
5.3840 ± 2.8	$\left(\frac{9}{2} \rightarrow \frac{13}{2}\right)$			3
$5.5035 \pm 3.1 \ ^{\rm c})$		$\Gamma < 15 \ {\rm keV}$		3, 4, 7
5.54	$\frac{3}{2}^{+}$	$\Gamma\approx 490~{\rm keV}$	n	5
5.7046 ± 4.3 ^c)	$\frac{7}{2}^{-}$	$\Gamma = 7.8 \pm 1.4 \ \mathrm{keV}$	n	3,4,5,7,8
$6.1196 \pm 3.2 \ ^{\rm c})$	$\frac{3}{2}^{+}$	$\Gamma\approx 110~{\rm keV}$	n	3,5
6.1916 ± 5.5				3
6.2693 ± 2.6	$\frac{7}{2}^{-}$	$\Gamma = 19.2 \pm 2.4 \ \mathrm{keV}$	n	3, 4, 5, 7, 8
$6.4058 \pm 3.1 \ ^{\rm c})$				3
6.4662 ± 4.8	$\left(\frac{7}{2} \rightarrow \frac{11}{2}\right)$		(n)	3,5,7
6.583 ± 6 ^c)				3, 7
6.903 ± 8				3, 7
6.988 ± 9				3, 7
7.118 ± 10				3, 7
7.242 ± 8				3, 7
7.508 ± 10				3
8.048 ± 20				3
8.132 ± 20				3
8.247 ± 20				3
8.450 ± 20				3
8.561 ± 20				3

Table 19.2 Energy Levels of $^{19}\mathrm{O}$ $^{\mathrm{a}})$

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	$\tau \text{ or } \Gamma_{\text{c.m.}}{}^{\text{b}})$	Decay	Reactions
8.591 ± 20				3
8.916 ± 20				3
8.923 ± 20				3
9.022 ± 20				3
9.064 ± 20				3
9.253 ± 20				3
9.324 ± 20				3
9.43				3
9.56				3
9.6	$\frac{7}{2}^{-}$		n	3, 5
9.9	$\frac{7}{2}^{-}$		n	3, 5
9.93				3
9.98				3
10.21	$\frac{7}{2}^{-}$		n	5
10.66	$\frac{7}{2}^{-}$		n	5
11.25 ± 50		$\Gamma = 240 \text{ keV}$	n, α	6
11.58 ± 50		$\Gamma = 330 \text{ keV}$	n, α	6

Table 19.2 (continued) Energy Levels of $^{19}O^{a}$)

^a) See also Tables 19.3 and 19.7.
^b) See also reaction 1, and Table 19.2 in (78AJ03).
^c) See footnotes to Table 19.4.
^d) (87AJ02) gave J^π = ³/₂⁺ for these levels. Assignments have been revised based on arguments presented in (88WA17).

$E_{\rm i}~({\rm MeV})$	J_{i}^{π}	$E_{\rm f}~({\rm MeV})$	Branch (%) ^a)	δ
0.096	$\frac{3}{2}^{+}$	0	100	
1.47	$\frac{1}{2}^{+}$	0	2.0 ± 0.2	
		0.096	98.0 ± 0.2	
2.37	$\frac{9}{2}^{+}$	0	100	0.002 ± 0.05
2.78	$\frac{7}{2}^{+}$	0	100	0.8 ± 0.5
3.07	$\frac{3}{2}^{+}$	1.47	100	
3.16	$\frac{5}{2}^{+}$	0	8 ± 4	
		0.096	92 ± 4	$0.03 < \delta < 2.3$
3.94	$\frac{3}{2}^{-}$	0	33 ± 8	
		0.096	39 ± 8	
		1.47	28 ± 4	

Table 19.3 Radiative decays in $^{19}\mathrm{O}$ $^{\mathrm{a}})$

^a) For other values and for references see Table 19.5 in (78AJ03).

The thermal capture cross section is 0.16 ± 0.01 mb (81MUZQ). The scattering length $b = 5.84 \pm 0.07$ fm, $\sigma_{\rm free} = 3.86 \pm 0.10$ b (79KO26). The total cross section has been measured for $E_{\rm n} = 0.14$ to 2.47 MeV [see (78AJ03)] and at $E_{\rm n} = 5$ to 7.5 MeV [G. Auchampaugh, quoted in (86KO10)]. A multi-level R-matrix analysis of these and additional $\sigma(\theta)$ data leads to the states shown in Table 19.6 and to some additional structures. The five $\frac{7}{2}^{-}$ states [¹⁹O* (6.27, 9.64, 9.84, 10.21, 10.66)] (see, however, footnote (a) to Table 19.6) contain about 20–30% of the allowed $f_{7/2}$ single-particle strength. See also the compilation of neutron cross sections in (88MCZT). Isobaric analog assignments are presented (86KO10). See also (82RA1A) and see the astrophysical discussion in (88AP1A, 88MA1U).

6. ¹⁸O(n,
$$\alpha$$
)¹⁵C $Q_{\rm m} = -5.009$ $E_{\rm b} = 3.957$

The total cross sections for the α_0 and α_1 groups have been measured for $E_n = 7.5$ to 8.6 MeV: resonance structure is reported at $E_n = 7.70 \pm 0.05$ and 8.05 ± 0.05 MeV with $\Gamma_{\rm lab} = 0.25$ and 0.35 MeV, respectively [¹⁹O* (11.25, 11.58)]: see (78AJ03).

7. ¹⁸O(d, p)¹⁹O
$$Q_{\rm m} = 1.733$$

Angular distributions have been measured at $E_{\rm d} = 0.8$ to 15 MeV: see (78AJ03, 83AJ01). The $l_{\rm n}$ values and spectroscopic factors derived from these measurements are displayed in Table 19.5. Branching ratios are shown in Table 19.3. ¹⁹O* (0.096) has $g = -0.48 \pm 0.06$; its configuration appears to be mainly $d_{5/2}^3$, and $B(M1) = 0.040 \pm$

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$J^{\mathrm{b}})$	$E_{\rm x}~({ m MeV}\pm{ m keV})~~J^{ m b})$
0	$\frac{5}{2}$	6.4662 ± 4.8 ⁱ)
0.0944 ± 1.1	$\frac{3}{2}$	6.5827 ± 6.0 ^j)
1.4716 ± 1.8	$\frac{1}{2}$	6.903 ± 8
2.3711 ± 1.9	$\frac{9}{2}$	6.988 ± 9
2.7776 ± 1.9	$\frac{7}{2}$	7.118 ± 10
3.0674 ± 1.6	$\frac{3}{2}$	7.242 ± 8
3.1536 ± 2.8	$\frac{5}{2}$	7.508 ± 10
3.2316 ± 2.3	$\frac{3}{2}$	8.048 ± 20
3.9449 ± 1.4 ^c)		8.132 ± 20
4.1093 ± 1.9	$\frac{3}{2}$	8.247 ± 20
4.3281 ± 2.4	$\frac{3}{2}, \frac{5}{2}$	8.450 ± 20
4.4025 ± 2.7	$\frac{3}{2}, \frac{5}{2}, \frac{7}{2}$	8.561 ± 20
4.5820 ± 4.6	$\frac{3}{2}$	8.591 ± 20
4.7026 ± 2.7 ^d)		8.916 ± 20
4.9683 ± 5.5	$\frac{5}{2}, \frac{7}{2}$	8.923 ± 20
5.0070 ± 4.5	$\frac{3}{2}, \frac{5}{2}$	9.022 ± 20
5.0820 ± 5.4	$\frac{1}{2}$	9.064 ± 20
5.1484 ± 3.2	$\frac{5}{2}$	9.253 ± 20
5.3840 ± 2.8	$\frac{9}{2}, \frac{11}{2}, \frac{13}{2}$ e)	9.324 ± 20
$5.5035 \pm 3.1 \ ^{\rm f})$		9.43
5.7046 ± 4.3 ^g)		9.56
$6.1196 \pm 3.2 \ ^{\rm h})$		9.77
6.1916 ± 5.5	$\frac{1}{2}$	9.88
6.2693 ± 2.6	$\frac{7}{2}$	9.93
$6.4058 \pm 3.1 \ ^{\rm h})$		9.98

Table 19.4 States in ¹⁹O from ${}^{13}C({}^{7}Li, p)$ ^a)

^a) (77FO10); $E(^{7}\text{Li}) = 16.0$ MeV. Angular distributions have been reported to all states with $E_x < 6.8$ MeV. See also (78AJ03).

^b) Derived from total cross section and 2J + 1 analysis.

^c) Corresponds to unresolved states. Assuming one of these to be a $\frac{3}{2}^{-}$ state (see Table 19.5), the other should have $J = \frac{7}{2} \rightarrow \frac{13}{2}$.

^d) May correspond to unresolved states.

^e) If this group corresponds to a single state, the analysis indicates $J^{\pi} = \frac{9}{2}^{-}, \frac{11}{2}^{-}$ or $\frac{13}{2}^+$ (77FO10). ^f) Narrow unresolved states: see discussion in (77FO10).

^{g)} Cross section is too large for the known state at this energy with $J^{\pi} = \frac{3}{2}^+$. If this group corresponds to a doublet, the other member should have $J = \frac{1}{2} \rightarrow \frac{5}{2}$. ^{h)} Sharp group; if due to a single state $J = \frac{11}{2} \rightarrow \frac{17}{2}$. ⁱ⁾ $J = (\frac{7}{2}, \frac{9}{2}, \frac{11}{2})$.

j) The total cross section to this state is very high implying unresolved states: if there are two states one must have $J > \frac{13}{2}$.

$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$\Gamma_{\rm c.m.}~(\rm keV)$	$l_{\rm n}$ ^b)	l_{2n} ^c)	S^{d})	J^{π}
0		2	0	0.57	$\frac{5}{2}+$
0.0960 ± 0.5		2	2		$\frac{3}{2}^{+}$
1.4719 ± 0.5		0	2	1.00	$\frac{1}{2}^{+}$
2.3715 ± 1.0		2	(2+4)		$\frac{9}{2}^{+}$
2.7790 ± 0.9		(2)	2		$\frac{7}{2}^{+}$
3.0671 ± 2.6			(2+4)		$\frac{3}{2}^{+}$
3.1535 ± 2.4		2	(0+2)	(0.06)	$\frac{5}{2}^{+}$
3.237 ± 5					$\frac{3}{2}^{+}$
3.944 ± 3		1		0.11	$\frac{3}{2}^{-}$
4.118 ± 5	< 15	2	(2)	0.33	$\frac{3}{2}^{+}$
4.333 ± 12	< 15				
4.402 ± 12	< 15				
4.584 ± 12	75 ± 5	1		0.15	$\frac{3}{2}^{-}$
4.707 ± 12	< 15	2		0.02	$\frac{5}{2}^{+}$
4.998 ± 12	< 15				
5.150 ± 10	< 15	2		0.08	$\frac{5}{2}^{+}$
5.455 ± 10	320 ± 25	2	(2+4)	0.85	$\frac{3}{2}^{+}$
5.502 ± 12	< 15				
5.714 ± 12	< 15	2		0.17	$(\frac{3}{2}^+)$
6.280 ± 12	< 15	3		0.13	$\frac{7}{2}^{-}$
6.480 ± 15					
6.560 ± 15					
6.899 ± 15					
6.997 ± 15					
7.117 ± 15					
7.248 ± 15					

Table 19.5Levels of ¹⁹O from ¹⁷O(t, p) and ¹⁸O(d, p) ^a)

^a) For references see Table 19.3 in (78AJ03). However, see note in Table 19.4 of

(87AJ02) concerning errors in that table and subsequent corrections. ^b) ¹⁸O(d, p)¹⁹O. ^c) ¹⁷O(t, p)¹⁹O. ^d) $E_d = 14.8$ MeV: polarization and differential cross section measurements. The spectroscopic factors for the states with $E_x > 4.1$ MeV have been calculated in the weakly bound approximation: see (78AJ03).

$E_{\rm res} ({\rm MeV} \pm {\rm keV})$	$\Gamma_{\rm c.m.}~(\rm keV)$	${}^{19}O^* (MeV)$	J^{π}
0.67	52 ± 3 $^{\rm b})$	4.59	$\frac{3}{2}^{-}$
1.18	49 ± 5 ^b)	5.07	$\frac{1}{2}^{-}$
$1.256 \pm 10^{\text{ b}})$	3.4 ± 1.0 $^{\rm b})$	5.146	$\geq \frac{5}{2}^{(+)}$
1.42 ^c)		5.30	$\frac{3}{2}^{-}$
1.67	490	5.54	$\frac{3}{2}^{+}$
$1.840 \pm 10^{\text{ b}})$	7.8 ± 1.4 $^{\rm b})$	5.699	$\frac{7}{2}^{-}, \frac{5}{2}$
2.22	110	6.06	$\frac{3}{2}^{+}$
2.45	19.2 ± 2.4 ^b)	6.28	$\frac{7}{2}$
6.00		9.64	$\frac{7}{2}^{-}$
6.21		9.84	$\frac{7}{2}^{-}$
6.60		10.21	$\frac{7}{2}$
7.08 ^d)		10.66	$\frac{7}{2}^{-}$

Table 19.6 Resonances in $^{18}\mathrm{O}(\mathrm{n,\,n})^{18}\mathrm{O}$ $^{\mathrm{a}})$

^a) These data are from a multi-level R-matrix re-analysis by (86KO10) of the work displayed in Table 19.4 of (78AJ03), together with unpublished σ_t data by G.F. Auchampaugh, and $\sigma(\theta)$ for n_0 and n_1 for $5.0 < E_n < 7.5$ MeV. Uncertainties in E_x and Γ cannot be estimated. See also (86KO10) for other states and see footnote (a) in Table 19.5 of (87AJ02).

^b) See Table 19.4 of (78AJ03). ^c) See discussion in (86KO10). ^d) May be a doublet, but at least one of the states has $J^{\pi} = \frac{7}{2}^{-}$ (86KO10).

$E_{\rm x} ({\rm MeV})$	l	$J^{\pi b}$	$\sigma_{\rm Int}$ ^c) (mb)
0	2	$\frac{5}{2}^{+}$	2.60
0.1	2	$\frac{3}{2}^{+}$	0.19
1.47	0	$\frac{1}{2}^{+}$	0.08
3.07	2	$\frac{3}{2}^{+}$	0.03
3.15	2	$\frac{5}{2}^{+}$	0.06
3.24	2	$\frac{3}{2}^{+}$	0.05
4.70	2	$\frac{5}{2}^{+}$	0.09
$5.33^{\rm d})$	2	$\frac{3}{2}^{+}$	0.18
5.70	3	$\frac{7}{2}^{-}$ e)	0.14
6.27	3	$\frac{7}{2}$	0.31

Table 19.7 Levels of $^{19}{\rm O}$ from $^{18}{\rm O}(\alpha,\,^{3}{\rm He})^{19}{\rm O}$ a)

^a) (92YA08) $E_{\alpha} = 65$ MeV; DWBA analysis.

^b) Cited from (87AJ02).

^c) Integrated cross section.

 d) See discussion of this level in (92YA08) and (74SE01). See

also Table 19.6 here.

^e) Proposed in (92YA08).

0.015 $\mu_{\rm N}^2$. The ΔE value for the 1.47 \rightarrow 0.096 transition is 1375.3 \pm 0.5 keV. Assuming $E_{\rm f} = 96.0 \pm 0.5$ keV (Table 19.2), $E_{\rm i} = 1471.4 \pm 0.7$ keV. Angular correlations are consistent with $J^{\pi} = \frac{5}{2}^+$ for the ground state and unambiguously fix $J^{\pi} = \frac{3}{2}^+$ and $\frac{1}{2}^+$, respectively, for ¹⁹O* (0.096, 1.47): see (78AJ03) for references. See also (86SE1B).

8.
$${}^{18}O(\alpha, {}^{3}He){}^{19}O$$
 $Q_m = -16.620$

Differential cross sections were measured at $E_{\alpha} = 65$ MeV and analyzed with DWBA calculations (92YA08). See Table 19.7.

9. ¹⁹N(
$$\beta^{-}$$
)¹⁹O $Q_{\rm m} = 12.528$

Many measurements of the half-life have been reported (see ¹⁹N) and a value of 0.304 ± 0.016 sec has been adopted. A neutron emission probability of $33^{+34}_{-11}\%$ (88MU08) and $62.4 \pm 2.6\%$ (91RE02) has been measured. Shell model predictions for the ¹⁹N(β^-)¹⁹O decay are discussed in (88WA17), and a β^- delayed γ decay scheme for ¹⁹O based on measurements of (86DU07) ($E_{\gamma} = 96.0 \pm 1.0, 709.2 \pm 0.8, \text{ and } 3137.8 \pm 1.0 \text{ keV}$ with relative intensities of $100 \pm 10, 63 \pm 21$, and 76 ± 21) is proposed. Arguments for $J^{\pi} = (\frac{3}{2}^+)$ and $(\frac{1}{2}, \frac{3}{2}^-)$ for the 3067 and 3232 keV levels are given. Evidence on the formation and decay of the 3945 keV complex of levels is reviewed. These calculations predict a ¹⁹N half

life of 0.54 sec and a neutron emission probability $P_n = 0.87$. They also predict $J^{\pi} = \frac{1}{2}^{-1}$ for the ¹⁹N ground state and branching ratios for decay to ¹⁹O levels.

10. ¹⁹F
$$(\pi^-, \gamma)^{19}$$
O $Q_{\rm m} = 134.749$

Transitions to ${}^{19}O^*$ (0[u], 4.9, 6.3) have been observed in the radiative capture of stopped negative pions (83MA16).

11.
$${}^{19}F(n, p){}^{19}O$$
 $Q_m = -4.037$

See (86HEZW; $E_{\rm n} = 200 \text{ MeV}$).

12.
$${}^{19}\mathrm{F}(\mathrm{t}, {}^{3}\mathrm{He}){}^{19}\mathrm{O}$$
 $Q_{\mathrm{m}} = -4.800$

Differential cross sections for the ¹⁹O ground state and $E_x = 0.1$ MeV state were measured at $E_t = 33$ MeV (91PI09). A DWBA analysis was carried out.

¹⁹F (Figs. 19.2 and 19.4)

GENERAL: See Table 19.8.

$$\langle r^2 \rangle^{1/2} = 2.885 \pm 0.015 \text{ fm [see (78AJ03)]}$$

 $\mu_{\text{g.s.}} = +2.628866 \text{ (8) n.m. (78LEZA)}$
 $\mu_{0.197} = +3.607 \text{ (8) n.m. (78LEZA)}$
 $Q_{0.197} = -0.12 \pm 0.02 \text{ b (78LEZA)}$

1. ${}^{10}B({}^{9}Be, X)$

Mass distribution from the sequential decay of the compound nuclei formed from ${}^{10}\text{B} + {}^{9}\text{Be}$ and ${}^{10}\text{B} + {}^{10}\text{B}$ at $E_{\text{lab}}/A = 11$ MeV were measured by (93SZ02). It was determined that the hot composite systems as light as ${}^{19}\text{F}$ and ${}^{20}\text{Ne}$ can behave like liquid droplets with no remnant shell effects.

Tab	le	19.8
${}^{19}F -$	G	eneral

Shell Model

Reviews:

88BR1P Status of the nuclear shell model

88EL1B Review of early attempts to describe the spectrum of 19 F using the shell model Other articles:

87BR30 Empirically optimum M1 operator for sd-shell nuclei

87LE15 A shell-model study of nuclear form factors for multi-nucleon transfer reactions

87RA36 Strong-absorption model analysis of elastic and inelastic ³He scattering

88BR11 Semi-empirical effective interactions for the 1s-0d shell

89OR02 Empirical isospin nonconserving Hamiltonians for shell-model calculations

 $90{
m GU10}$ Charge densities of sp- and sd-shell nuclei and occupation numbers of 2s states

90HA07 Neutrino nucleosynthesis in supernovae: shell model predictions

90SK04 A = 18 nuclei, effective interaction in the sd shell (also calc. A = 19 energy spectra)

91MA41 Finite nuclei calculations with realistic potential models

92FR01 Nuclear charge radii systematics in the sd shell from muonic atom measurements

92GU16 Root-mean square radii of sd-shell nuclei

92JI04 Bonn potential used to evaluate energy spectra of some sd-shell nuclei

92WA22 Effective interactions for the 0p1s0d nuclear shell-model space

93PO11 Shell-model calcs. of binding energies and magnetic moments of light nuclei

93VO01 Spin-Isospin SU(4) symmetry in sd- and fp-shell nuclei

94VE04 Exp. meas. & calc. of spectroscopic factors from one-proton stripping rxns on sd-shell nucl.

Cluster Models

88UT02	Quasi-free stripping rxns. – extended Serber model & cluster momentum distributions

90OS03 Cluster-stripping reactions in heavy-ion collisions (including ${}^{16}O({}^{7}Li, \alpha){}^{19}F)$

91LE07 Algebraic approach to α -cluster states in ¹⁹F: predicted energy spectrum (SU(3) × U(2))

91LE08 Alg. approach to α -cluster states in ¹⁹F: calc. EM & other properties comp. to exp. data

91OS04 Diff. cross-section of cluster transfer heavy-ion reactions in the whole angle region

92SA27 $(t + {}^{16}\text{O}) + (\alpha + {}^{15}\text{N})$ cluster model study of electron scattering on ${}^{19}\text{F}$: calc. form factors 93AB02 $\alpha - {}^{16}\text{O}$ and $\alpha - {}^{15}\text{N}$ optical potentials in the range between 0 and 150 MeV

Special States

ъ	
Ro	TIOTIC'
TUC	v1Cw5.

- 88BR1P Status of the nuclear shell model
- 88GA10 Nucleon-alpha reactions in nuclei
- 88HE1C Symmetries and nuclei

Other articles:

86AD1A Parity and time-reversal violation in nuclei and atoms

88TA12 Coupled channel representation of phase anomaly observed in scattering of ${}^{19}\text{F} + {}^{12}\text{C}$

89HA22 Nucleon and nuclear anapole moments

89OR02 Empirical isospin nonconserving Hamiltonians for shell-model calculations

90KA1F Theoretical aspects of nuclear parity violation

90SK04 A = 18 nuclei, effective interaction in the sd shell (also calc. A = 19 energy spectra)

91LE07 Algebraic approach to α -cluster states in ¹⁹F: predicted energy spectru (SU(3) × U(2))

92RA1N Mechanism of (n, γ) reaction at low neutron energies

93ZH17 Isospin selection rules and widths of highly-excited states of light nuclei

Reference Description

Electromagnetic

Reviews:

- 88AR11 Relativistic and quark effects in nuclear magnetic moments
- 88HE1E Report on charge symmetry, charge independence, parity and time reversal invariance
- 92GO1Q M4 excitations of p-shell nuclei
- 93EN03 Strengths of gamma-ray transitions in A = 5-44 Nuclei

Other articles:

- 87BR30 Empirically optimum M1 operator for sd-shell nuclei
- 90PI1G Coherent EM excitation & disintegration of relativistic nuclei passing through crystals
- 91LE08 Algebraic approach to α -cluster states in ¹⁹F: calc. EM, etc. comp. to exp. data

Astrophysics

Review:

88AP1A Neutrino diffusion, primordial nucleosynthesis and the r-process

89BA2P Neutrino astrophysics

90AR10 Nuclear reactions in astrophysics

90TH1E Summary of topics presented at Workshop on Primordial Nucleosynthesis

93HA1D Core-collapse supernovae & other topics that combine nuclear, particle and astrophysics Other articles:

- 87DW1A Cosmic-ray elemental abundances from 1 to 10 GeV per amu for boron through nickel
- 88CA1N Analytic expressions for thermonuclear reaction rates involving $Z \leq 14$ nuclei
- 88HA1T Neutrino preheating in supernovae, and the origin of fluorine (A)
- 88WO1C Supernova neutrinos, neutral currents and the origin of fluorine
- 89JI1A Nucleosynthesis inside thick accretion disks around massive black holes
- 90HA07 Neutrino nucleosynthesis in supernovae: shell model predictions
- 90MA1Z Nuclear reaction uncertainties in standard & non-standard cosmologies
- 90SI1D Spallation processes and nuclear interaction products of cosmic rays
- 90WE1I Cosmic-ray source charge & isostopic abundances studied using fragmentation X-sects.
- 91RY1A Detecting solar boron neutrinos with Cerenkov and scintillation detectors
- 92GA03 Direct processes in ⁷Li + ¹²C & ⁷Li + ¹⁹⁷Au breakup rxns., extract astrophys. X-sects.

Applications

87BH1A	Time differential perturbed angular distribution studies on ¹⁹ F implanted into diamond
87FR1F	Explanation of unexpected efg's in ¹⁹ F-time differential perturbed angular distrib. meas.
87KN01	Attenuations & atomic spin precessions of γ -angular correls. for Coulomb-excited ¹⁹ F
88AL1K	Analysis of "Desert Rose" (geological sample) using RBS and PIXE techniques (A)
88KO18	Experimental study on p-wave neutron strength functions for light nuclei
88UM1A	Quantitative H analysis; simultaneous detection of α 's and recoil H's in ¹ H(¹⁹ F, $\alpha\gamma$) ¹⁶ O
89TA1N	Depth profiles of implanted 18 F, 79 Br & 132 Xe in Si in the energy range 85–600 keV
90ZI04	Study of fluorine in tin oxide films
90ZS01	Fluorine profiling after application of various anti-caries dental gels
91MC02	X-ray production in fluorine by highly charged boron, carbon, and oxygen ions
91PI12	Enhancement of role of low multipole transitions in Coulomb excit. of nucl. in crystals
92MO31	19 F & 31 P magic-angle spinning NMR of Sb(III)-doped fluorapatite phosphors
92ZS01	Test of new standard for F determination using p-induced γ -ray emission spectrometry
94TA1B	An investigation of range distribution parameters of implanted ¹⁹ F ions in Tantalum

Reference Description

Complex Reactions

Review:

1001000	
89NI1D	High energy gamma-ray production in nuclear reactions
Other artic	les:
86MA13	Experimental search for nonfusion yield in heavy residues emitted from ${}^{11}B + {}^{12}C$
87BE1F	Target fragmentation at ultrarelativistic energies
87BU07	Projectile-like fragments from 20 Ne + 197 Au – counting simultaneously emitted neutrons
87HE1H	Search for anomalously heavy isotopes of low Z nuclei
87LY04	Fragmentation and the emission of particle stable and unstable complex nuclei
87PA1D	Recoil accelerator mass spectrometry of nuclear reaction products
87SH23	Dissipative phenomena & α -particle emission in reactions induced by ${}^{16}O + {}^{27}Al$
87YI1A	Deep inelastic collision induced by 93 MeV 14 N on nat Ca
88CA1G	Experimental indications of selective excitations in dissipative heavy ion collisions
88DI08	Molecular orbital theory of 2-cluster transfer process in heavy-ion scattering & rxns.
88SH03	28 Si + 14 N orbiting interaction
89BA1E	Production of hypernuclei in relativistic ion beams
89BA2N	Evaluation of hypernucleus production cross-sections in relativistic heavy-ion collisions
89BR1G	Fragmentation cross sections of ²⁸ Si at 14.5 GeV/nucleon for $Z_{\rm f} = 6-13$
89CA15	Fusion and binary reactions in the collision of ${}^{32}S$ on ${}^{26}Mg$ at $E(lab) = 163.5 \text{ MeV}$
89GR13	Compound nucleus emission of intermediate mass fragments in ${}^{6}\text{Li} + \text{Ag}$ at 156 MeV
89 GU1C	Peripheral collisions in Ar-induced rxns: energy dissip. study meas. via n multiplicities
89HA08	Complex-fragment emission in 12.6 MeV/nucleon ${}^{63}Cu + {}^{12}C \& {}^{63}Cu + {}^{27}Al rxns.$
89MA45	Target excitation & angular momentum transfer in ${}^{28}\text{Si} + {}^{181}\text{Ta}$ at $E/A = 11.9 \text{ MeV}$
89PA06	Complete & incomplete fusion of 6 MeV/nucleon light heavy ions (incl. 19 F) on 51 V
89SA10	Total cross sections of reactions induced by neutron-rich light nuclei
89YO02	Quasi-elastic & deep inelastic transfer in ${}^{16}\text{O} + {}^{197}\text{Au}$ for $E < 10 \text{ MeV/u}$
89YO09	Energy damping feature in light heavy-ion reactions
89ZHZY	Mass measurement of $Z = 7-19$ neutron-rich nuclei using the TOFI spectrometer (A)
90AL40	The activation method in experiments searching for neutron nuclei
90BO04	3 paths for intermediate-mass fragment formation from 640-MeV 86 Kr + 63 Cu
90DE14	Reaction mechanisms and their interaction time from ${}^{19}\text{F} + {}^{63}\text{Cu}$ at 100–108 MeV
90LE08	Statistical equilibrium in the ${}^{40}\text{Ar} + {}^{12}\text{C}$ system at $E/A = 8 \text{ MeV}$
90YE02	Intermediate mass fragment emission in the 161 -MeV p + Ag reaction
94PI1A	In flight electromagnetic excitation of low-lying levels at energies up to a few ${\rm GeV/A}$

Muons and Neutrinos

90CH13	Muon capture rates in nuclei calculated & compared to experimental values
90HA07	Neutrino nucleosynthesis in supernovae: shell model predictions
91RY1A	Detection of solar neutrinos using Cerenkov and scintillation detectors
92DO11	Inelastic neutrino scattering by atomic electrons
93GO09	Measurement of hyperfine transition rates in muonic $^{19}\mathrm{F},~^{23}\mathrm{Na},~^{31}\mathrm{P}$ and $^{\mathrm{nat}}\mathrm{Cl}$

Table 19.8 (continued) ${}^{19}\mathrm{F}$ – General

Reference Description

Pions & Hypernuclei

Review:

88HE1G	Hadronic parity violation: a summary of theoretical discussion
94EJ01	Perspectives on the study of hypernuclear structure
Other articl	les:
89BA1E	Production of hypernuclei in relativistic ion beams
89BA2N	Evaluation of hypernucleus production cross-sections in relativistic heavy-ion collisions
89GA09	Pionic distortion factors for radiative pion capture studies
89GE10	Threshold pion-nucleus amplitudes as predicted by current algebra
89KA37	Finite-range effects on strong-interaction level shifts & widths in pionic atoms
90CH12	Inclusive radiative pion capture in nuclei reanalyzed from a many-body point of view
91CI08	Momentum-space method for calc. of strong-interaction shifts & widths in pionic atoms
91CI11	Nuclear structure effects in light π -mesoatoms
93NI03	Pionic decay of Λ hypernuclei

Antimatter

86KO1E Sear	ch for \bar{p} -atomic	X-rays at LEAR
-------------	--------------------------	----------------

- 87GR20 Widths of 4f antiprotonic levels in the oxygen region
- 87HA1J Widths of 4f antiprotonic levels in the O region using realistic nucl. wavefunctions
- 90JO01 The strong-interaction fine and hyperfine structure of antiprotonic atoms
- 93PI10 Coulomb excitation of E1 & E2 transitions in ¹⁹F of LiF crystals by p & \bar{p}

Ground State Properties

Review

89RA17	Compilation of exp. data on nuclear moments for ground & excited states of nucl.
92PY1A	Nuclear quadrupole moments for $Z = 1-20$: precise calcs. on atoms & small molecules
Other articl	es:
87BR30	Empirically optimum M1 operator for sd-shell nuclei
88AR1I	Relativistic and quark contributions to nuclear magnetic moments
89AN12	A-dependence of the difference $(r_{el} - r_{mu})$, a dispersion effect in electron scattering
89 GU25	Determin. of spectroscopic factors of several light nuclei from nuclear vertex constants
89SA10	Total cross sections of reactions induced by neutron-rich light nuclei
90GU10	Charge densities of sp- and sd-shell nuclei & occupation numbers of 2s states
90LO11	Self-consistent calcs. of bind. energies & various radii using density-functional method
92FR01	Nuclear charge radii systematics in the sd shell from muonic atom measurements

(A) denotes that only an abstract is available for this reference.

$E_{\mathbf{x}}$	$J^{\pi}; T$	K^{π}	$ au_{ m m}$ or	Decay	Reactions
$({\rm MeV}\pm{\rm keV})$			$\Gamma_{\rm c.m.}$		
0	$\frac{1}{2}^+; \frac{1}{2}$	$\frac{1}{2}^+$	stable		$\begin{array}{c}9,\ 11,\ 12,\ 15,\ 17,\ 18,\ 19,\ 21,\\22,\ 23,\ 24,\ 25,\ 26,\ 31,\ 32,\ 33,\\34,\ 39,\ 41,\ 42,\ 45,\ 46,\ 48,\ 49,\\50,\ 51,\ 52,\ 53,\ 54,\ 55,\ 56,\ 57,\\58,\ 59,\ 60,\ 61,\ 62\end{array}$
0.109894 ± 0.005	$\frac{1}{2}^{-}$	$\frac{1}{2}^{-}$	$\tau_{\rm m}=0.853\pm0.010~{\rm ns}$	γ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.197143 ± 0.004	$\frac{5}{2}^{+}$	$\frac{1}{2}^{+}$	$\tau_{\rm m} = 128.8 \pm 1.5 \text{ ns}$ [g = 1.441 ± 0.003]	γ	$\begin{array}{c} 8,9,12,15,17,18,19,24,25,\\ 26,32,33,34,39,41,42,45,\\ 49,51,53,58,60 \end{array}$
1.34567 ± 0.13	$\frac{5}{2}^{-}$	$\frac{1}{2}^{-}$	$ au_{ m m} = 4.13 \pm 0.06 \text{ ps}$ [$ g = 0.27 \pm 0.04$]	γ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.4587 ± 0.3	$\frac{3}{2}^{-}$	$\frac{1}{2}^{-}$	$\tau_{\rm m} = 90 \pm 20~{\rm fs}$	γ	$\begin{array}{c} 11,\ 12,\ 18,\ 19,\ 24,\ 32,\ 37,\ 39,\\ 41,\ 42,\ 45,\ 49,\ 53,\ 60 \end{array}$
1.554038 ± 0.009	$\frac{3}{2}^{+}$	$\frac{1}{2}^{+}$	$\tau_{\rm m} = 5\pm3~{\rm fs}$	γ	$\begin{array}{l}9,\ 17,\ 18,\ 19,\ 24,\ 25,\ 26,\ 31,\\32,\ 33,\ 34,\ 39,\ 41,\ 42,\ 45,\ 49,\\51,\ 53,\ 58,\ 60\end{array}$
2.779849 ± 0.034	$\frac{9}{2}^+$	$\frac{1}{2}^{+}$	$\tau_{\rm m} = 280 \pm 30 \ {\rm fs}$	γ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3.90817 ± 0.20	$\frac{3}{2}^{+}$	$\frac{3}{2}^{+}$	$\tau_{\rm m} = 9 \pm 5~{\rm fs}$	γ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3.9987 ± 0.7	$\frac{7}{2}^{-}$	$\frac{1}{2}^{-}$	$\tau_{\rm m} = 19 \pm 7 ~\rm{fs}$	γ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4.0325 ± 1.2	$\frac{9}{2}^{-}$	$\frac{1}{2}^{-}$	$\tau_{\rm m} = 67 \pm 15~{\rm fs}$	γ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4.377700 ± 0.042	$\frac{7}{2}^+$	$\frac{3}{2}^{+}$	$\tau_{\rm m} < 11~{\rm fs}$	γ	$\begin{array}{c} 4,9,17,18,19,24,25,26,31,\\ 32,34,39,42,49,60 \end{array}$
4.5499 ± 0.8	$\frac{5}{2}^{+}$	$\frac{3}{2}^{+}$	$\tau_{\rm m} < 50 {\rm ~fs}$	γ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4.5561 ± 0.5	$\frac{3}{2}^{-}$		$\tau_{\rm m} = 17^{+10}_{-8} {\rm \ fs}$	γ	$\begin{array}{c}9,\ 18,\ 19,\ 26,\ 31,\ 32,\ 39,\ 42,\\49,\ 60\end{array}$
4.648 ± 1	$\frac{13}{2}^+$	$\frac{1}{2}^{+}$	$\tau_{\rm m} = 3.7 \pm 0.4~\rm ps$	γ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4.6825 ± 0.7	$\frac{5}{2}$		$\tau_{\rm m} = 15.4 \pm 3.0~{\rm fs}$	γ, α	4, 9, 18, 22, 24, 26, 31, 32, 39, 42, 49, 60
5.1066 ± 0.9	$\frac{5}{2}^{+}$		$\tau_{\rm m} < 30 {\rm ~fs}$	γ, α	4, 9, 18, 19, 24, 26, 31, 32, 39, 42, 49, 60
5.337 ± 2	$\frac{1}{2}^{(+)}$		$\tau_{\rm m} \leq 0.1 ~{\rm fs}$	γ, α	9, 18, 19, 24, 26, 32, 33, 39, 42, 49, 60

Г	able 1	9.9)	
Energy	levels	of	$^{19}\mathrm{F}$	a)

E _x	$J^{\pi}; T$	K^{π}	$ au_{ m m}$ or	Decay	Reactions
$({\rm MeV}\pm{\rm keV})$			$\Gamma_{\rm c.m.}$		
5.418 ± 1	$\frac{7}{2}^{-}$		$\Gamma = (2.6\pm0.7)\times10^{-3}~{\rm keV}$	γ, α	4, 9, 18, 24, 26, 32, 33, 39, 42, 49
5.4635 ± 1.5	$\frac{7}{2}^{+}$	$\frac{1}{2}^{+}$	$\tau_{\rm m} \leq 0.26~{\rm fs}$	γ, α	$\begin{array}{c} 4,9,12,17,18,19,24,25,26,\\ 39,42,49 \end{array}$
5.5007 ± 1.7	$\frac{3}{2}^{+}$		$\Gamma = 4 \pm 1 \text{ keV}$	γ, α	$\begin{array}{c}9,\ 10,\ 19,\ 24,\ 26,\ 33,\ 39,\ 42,\\ 49\end{array}$
5.535 ± 2	$\frac{5}{2}^{+}$			γ, α	$9,\ 24,\ 26,\ 33,\ 39,\ 42,\ 49,\ 60$
5.621 ± 1	$\frac{5}{2}^{-}$		$\tau_{\rm m} < 1.3 ~{\rm fs}$	γ, α	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5.938 ± 1	$\frac{1}{2}^{+}$			γ, α	$9,\ 26,\ 31,\ 32,\ 33,\ 39,\ 42,\ 60$
6.070 ± 1	$\frac{7}{2}^{+}$		$\Gamma = 1.2 \text{ keV}$	γ, α	4, 9, 24, 39, 42
6.088 ± 1	$\frac{3}{2}^{-}$		$\Gamma = 4 \text{ keV}$	γ, α	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6.100 ± 2	$\frac{9}{2}^{-}$			γ	4, 26, 39
6.1606 ± 0.9	$\frac{7}{2}^{-}$		$\Gamma = (3.7 \pm 1.0) \times 10^{-3} \text{ keV}$	γ, α	4, 9, 26, 33, 39, 42, 60
6.255 ± 1	$\frac{1}{2}^{+}$		$\Gamma = 8 \ {\rm keV}$	α	$\begin{array}{c} 10,\ 24,\ 26,\ 31,\ 32,\ 33,\ 39,\ 42,\\ 60 \end{array}$
6.282 ± 2	$\frac{5}{2}^{+}$		$\Gamma = 2.4 \text{ keV}$	γ, α	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6.330 ± 2	$\frac{7}{2}^{+}$		$\Gamma = 2.4 \text{ keV}$	γ, α	4, 7, 10, 12, 24, 39, 42
6.429 ± 8	$\frac{1}{2}^{-}$		$\Gamma = 280 \text{ keV}$	α	10, 39
6.4967 ± 1.4	$\frac{3}{2}^{+}$			γ, α	9,19,25,26,32,33,39
6.5000 ± 0.9	$\frac{11}{2}^{+}$	$\frac{3}{2}^{+}$	$\Gamma>2.4\times10^{-3}~{\rm keV}$	γ, α	4, 9, 19, 24, 26, 39
6.5275 ± 1.4	$\frac{3}{2}^{+}$		$\Gamma = 4 \text{ keV}$	$\gamma, lpha$	9, 17, 19, 24, 26, 39
6.554 ± 2	$\frac{7}{2}^{(+)}$		$\Gamma = 1.6 \text{ keV}$	γ, α	9, 24, 39
6.592 ± 2	$\frac{9}{2}^{+}$	$\frac{3}{2}^{+}$	$\Gamma = (7.6 \pm 1.8) \times 10^{-3} \text{ keV}$	$\gamma, lpha$	4, 9, 17, 24, 26, 32, 39
6.787 ± 2	$\frac{3}{2}^{-}$		$\Gamma = (6.9 \pm 1.1) \times 10^{-3} \text{ keV}$	$\gamma, lpha$	9, 10, 24, 26, 32, 39
6.8384 ± 0.9	$\frac{5}{2}^{+}$		$\Gamma = 1.2 \text{ keV}$	γ, α	9,10,24,26,27
6.891 ± 4	$\frac{3}{2}^{-}$		$\Gamma = 28 \text{ keV}$	γ, α	9, 10, 24, 39
6.9265 ± 1.7	$\frac{7}{2}^{-}$		$\Gamma = 2.4 \text{ keV}$	γ, α	4, 9, 10, 12, 17, 18, 24, 26, 32, 33, 39
6.989 ± 3	$\frac{1}{2}^{-}$		$\Gamma = 51 \text{ keV}$	α	10, 26, 39
7.114 ± 6	$\frac{7}{2}^{+}$		$\Gamma = 32 \text{ keV}$	α	10, 32, 39
7.1662 ± 0.7	$\frac{11}{2}^{-}$		$\Gamma = (6.9 \pm 1.1) \times 10^{-3} \ \mathrm{keV}$	γ, α	4, 9, 26, 39
7.262 ± 2	$\frac{3}{2}^{+}$		$\Gamma < 6 \ {\rm keV}$	α	$\begin{array}{c} 10,\ 17,\ 18,\ 19,\ 26,\ 31,\ 32,\ 39,\\ 51 \end{array}$
7.364 ± 4	$\frac{1}{2}^{+}$			α	19, 26, 31, 32, 33, 39

Table 19.9 (continued) Energy levels of 19 F ^a)

E _x	$J^{\pi}; T$	K^{π}	$ au_{\mathrm{m}}$ or	Decay	Reactions
$({\rm MeV}\pm{\rm keV})$			$\Gamma_{\rm c.m.}$		
7.5396 ± 0.9	$\frac{5}{2}^+; \frac{3}{2}$		$\Gamma = 0.16 \pm 0.05$ keV $^{\rm c})$	γ, α	9, 10, 12, 17, 26, 32, 33, 39
7.56 ± 10	$\frac{7}{2}^{+}$		$\Gamma < 90 \ {\rm keV}$	α	10
7.587	$(\frac{5}{2}^{-})$			γ	39
7.6606 ± 0.9	$\frac{3}{2}^+; \frac{3}{2}$		$\Gamma=0.0022\pm0.0007~{\rm keV}$	γ, α	$9,\ 10,\ 26,\ 32,\ 33,\ 37,\ 39,\ 61$
7.702 ± 5	$\frac{1}{2}^{-}$		$\Gamma < 30 \text{ keV}$	α	10, 17, 26, 32, 39
7.74 ± 40	$(\frac{5}{2}, \frac{7}{2})^{-}$		$\Gamma < 6 \ {\rm keV}$		39, 51
(7.90)			$\Gamma < 200 \ {\rm keV}$	α	10
7.929 ± 3	$\frac{7}{2}^+, \frac{9}{2}$			γ, α	9,17,19
7.937 ± 3	$\frac{11}{2}^{+}$			γ, α	9, 25
8.0140 ± 1.0	$\frac{5}{2}^{+}$			р	32, 33
8.084 ± 3			$\Gamma \leq 3 \ {\rm keV}$	p, α	10, 30, 32
8.1377 ± 1.2	$\frac{1}{2}^{+}$		$\Gamma \leq 0.3 \ {\rm keV}$	γ , p, α	10, 26, 30, 31, 32
(8.16)			$\Gamma < 50 {\rm ~keV}$	α	10
8.1990 ± 1.0	$(\frac{5}{2}^+)$		$\Gamma < 0.8~{\rm keV}$	γ,p,α	10, 26, 30, 32
8.2543 ± 2.6	$(\frac{5}{2}, \frac{7}{2})^{-}$		$\Gamma \leq 1.5 \text{ keV}$	$\gamma, {\rm p}$	26, 32, 51
8.288 ± 2	$\frac{13}{2}^{-}$	$(\frac{1}{2}^{-})$	$\Gamma < 1~{\rm keV}$ $^{\rm c})$	γ, α	4, 9, 10, 11, 12, 13, 14, 17, 18
8.3100 ± 1.2	$\frac{5}{2}^{+}$		$\Gamma = 0.047 \pm 0.019 \ \mathrm{keV}$	γ , p, α	9, 26, 30, 32
8.370 ± 4	$\frac{7}{2}, \frac{5}{2}^+$		$\Gamma = 7.5 \pm 1.5 \ \mathrm{keV}$	γ, α	9
8.5835 ± 1.6	$\frac{5}{2}$		$\Gamma \leq 0.5 \ {\rm keV}$	γ,p,α	9, 26
8.5919 ± 1.0	$\frac{3}{2}^{-}$		$\Gamma = 2.0 \pm 0.1 \ \rm keV$	γ , p, α	9, 17, 26, 28, 30, 32
8.629 ± 4	$\frac{7}{2}$		$\Gamma < 1~{\rm keV}$ ^c)	γ, α	4, 9, 10, 51
8.65	$\frac{1}{2}^{+}$		$\Gamma\sim 300~{\rm keV}$	γ , p, α	26, 28, 30
8.7932 ± 1.5	$\frac{1}{2}^+; \frac{3}{2}$		$\Gamma = 46 \pm 2 \text{ keV}$	γ, p	26, 28, 30, 32, 33
8.864 ± 4	$<\frac{9}{2}$		$\Gamma \approx 1 \text{ keV}$	γ, α	9
8.9267 ± 2.8	$\frac{3}{2}^{-2}$		$\Gamma = 3.6 \pm 0.2 \ \rm keV$	γ , p, α	17, 18, 26, 28, 30
8.953 ± 3	$\frac{11}{2}^{-}$	$\frac{1}{2}^{-d}$	$\Gamma = \approx 1 \text{ keV}^{\text{c}}$	γ, α	4, 9, 10, 11, 12, 13, 14
9.030 ± 5	$\frac{5}{2}, \frac{7}{2}$	-	$\Gamma = 4.2 \pm 1 \text{ keV}$	γ, α	9
9.0997 ± 0.7	$\frac{1}{2}$		$\Gamma = 0.57 \pm 0.03 ~\rm keV$	γ , p, α	9, 26, 28, 30
9.101 ± 4	$\frac{7}{2}^+, \frac{9}{2}^+$		$\Gamma \approx 1 \text{ keV}$	γ, α	4, 9, 32
9.167 ± 1.4	$\frac{1}{2}^{+}$		$\Gamma = 6.2 \pm 0.5 \ \mathrm{keV}$	γ , p, α	9, 28, 30, 32
9.204 ± 7	$\frac{3}{2}$		$\Gamma = 10.2 \pm 1.5 \text{ keV}$	γ, α	9
9.267 ± 4	$\frac{11}{2}^{+}, \frac{9}{2}^{+}$		$\Gamma = 2 \pm 1 \text{ keV}$	γ, α	9
9.280 ± 5	$(\frac{7}{2}, \frac{9}{2})^+$		$\Gamma < 1.5 \ {\rm keV}$	γ, α	9, 51
9.318 ± 2	$\frac{3}{2}^{+}$		$\Gamma = 3.4 \pm 0.7 \ \rm keV$	$\gamma, \mathrm{p}, \alpha$	9, 17, 26
9.321 ± 1.1	$\frac{1}{2}^{+}$		$\Gamma = 5.0 \pm 0.2 \ \mathrm{keV}$	γ,p,α	28, 30

Table 19.9 (continued) Energy levels of 19 F ^a)

$(MeV \pm keV)$ $\Gamma_{c.m.}$	
9.329 ± 4 $< \frac{5}{2}$ $\Gamma \approx 6 \text{ keV}$ γ, α 9	
9.509 ± 4 $\frac{5}{2}^+, \frac{7}{2}^+$ c) $\Gamma < 1 \text{ keV }^c$) γ, α 9, 10	
9.527 ± 6 $(\frac{5}{2})$ $\Gamma = 28 \text{ keV}$ p, α 28, 30	
9.5364 ± 2.0 $\frac{5}{2}^+$ $\Gamma = 6.3 \pm 1.5 \text{ keV}$ γ, p, α 9, 26	
9.566 ± 3 $\frac{3}{2}^{-}$ $\Gamma = 26 \pm 3 \text{ keV}$ γ, p 26	
9.575 ± 4 $\frac{3}{2}^{-}$ $\Gamma = 67 \pm 3 \text{ keV}$ γ , p, α 26, 28, 30	
9.586 ± 3 $\frac{7}{2}$ $\Gamma = 8.9 \pm 1.2 \text{ keV}$ γ, p, α 9, 26, 32	
9.642 ± 6 $\frac{3}{2}, \frac{5}{2}$ $\Gamma \approx 8 \text{ keV}$ γ, α 9	
9.654 ± 6 $\frac{3}{2}, \frac{5}{2}$ $\Gamma \approx 6 \text{ keV}$ γ, α 9	
9.6675 ± 1.5 $\frac{3}{2}^+$ $\Gamma = 3.6 \pm 0.4 \text{ keV}$ γ , p, α 9, 26, 28, 30, 32	
9.710 ± 4 $\frac{9^+}{2}, \frac{11^-}{2}$ °) $\Gamma < 1 \text{ keV }^{c}$) γ, α 4, 9, 10, 17	
9.820 ± 1.0 $\frac{5}{2}^{-}$ $\Gamma = 0.3 \pm 0.05 \text{ keV}$ γ , p, α 9, 26, 28, 30	
9.834 ± 3 $\frac{11}{2} \rightarrow \frac{15}{2}$ $\Gamma < 1 \text{ keV}^{c}$) γ, α 4, 9, 10	
9.8740 ± 1.8 $\frac{11}{2}^{-}$ $\Gamma = (2.6 \pm 0.6) \times 10^{-3} \text{ keV}$ γ , p, α 4, 9, 10, 17, 18, 26	
9.887 ± 3 $\frac{1}{2}^+$ $\Gamma = 25 \pm 2 \text{ keV}$ γ, p, α 26, 28, 30	
9.895 ± 5 γ 4	
9.926 ± 3 $\frac{9}{2}^+; \frac{3}{2}^{c}$) $\Gamma \approx 1 \text{ keV}^{c}$) $\gamma, \alpha = 4, 9, 10$	
10.088 ± 5 $\frac{5}{2}^{-}, \frac{7}{2}^{-}$ c) $\Gamma < 1.5 \text{ keV}^{\text{c}}$) $\gamma, \alpha = 9, 10, 12$	
10.137 ± 0.8 $\frac{3}{2}^{-}$ $\Gamma = 4.3 \pm 0.6 \text{ keV}$ γ , p, α 9, 26, 30	
10.162 ± 3 $\frac{1}{2}^+$ $\Gamma = 31 \text{ keV}$ p, α 28, 30	
10.232 ± 3 $\frac{1}{2}^+$ $\Gamma < 1 \text{ keV}$ p, α 10, 28, 30	
10.254 ± 3 $\frac{1}{2}^+$ $\Gamma = 22 \text{ keV}$ p, α 28, 30	
10.308 ± 4 $\frac{3}{2}^+$ $\Gamma = 9.2 \text{ keV}$ p, α 10, 19, 28, 30	
10.365 ± 4 $\frac{7}{2} \rightarrow \frac{11}{2}$ $\Gamma = 3 \pm 1.5 \text{ keV}$ γ, α 4, 9, 32	
10.411 ± 3 $\frac{13}{2}^+$ $\frac{3}{2}^+$ $\Gamma < 1.5 \text{ keV}^{\text{c}}$) γ, α 4, 9, 10, 12, 17, 18, 19, 2	5, 59
10.469 ± 4 $\Gamma = 11.0 \pm 1.2 \text{ keV}$ p, α 10	
10.488 ± 4 $\Gamma = 4.8 \pm 0.8 \text{ keV}$ p, α 10	
10.4963 ± 1.3 $\frac{3}{2}^+$ $\Gamma = 5.7 \pm 0.6 \text{ keV}$ n, p, α 10, 27, 28, 30	
$10.521 \pm 4 \qquad \qquad \Gamma = 14 \pm 2 \text{ keV} \qquad \text{p, } \alpha \qquad 10, \ 32$	
10.5423 ± 1.1 $\Gamma = 2.5 \pm 0.2 \text{ keV}$ n, p, α 10, 27	
10.555 ± 3 $\frac{3}{2}^+$; $(\frac{3}{2})$ $\Gamma = 4.0 \pm 1.2 \text{ keV}$ p, α 10, 28, 30	
10.5647 ± 2.0 $\Gamma = 4.6 \pm 0.7 \text{ keV}$ n, p, α 10, 27	
10.581 ± 4 $(\frac{5}{2}^+)$ $\Gamma = 22 \pm 3 \text{ keV}$ p, α 28, 30	
10.6143 ± 1.6 $\frac{5}{2}^{+}$; $\frac{3}{2}$ $\Gamma = 4.7 \pm 0.5 \text{ keV}$ n, p, α 27, 28, 30	
10.7633 ± 2.5 $\frac{1}{2}^{-1}$ $\Gamma = 6 \pm 3 \text{ keV}$ n, p, α 17, 27, 28, 30	

Table 19.9 (continued) Energy levels of 19 F ^a)

$E_{\mathbf{x}}$	$J^{\pi}; T$	K^{π}	$ au_{ m m}$ or	Decay	Reactions
$({\rm MeV}\pm{\rm keV})$			$\Gamma_{\rm c.m.}$		
10.8597 ± 1.9	$\frac{5}{2}^{+}$		$\Gamma = 240 \pm 1.5 \text{ keV}$	n, p, α	27, 28, 30
10.927 ± 8	-			γ	4
10.9750 ± 2.5	$(\frac{3}{2}, \frac{5}{2})^+$		$\Gamma = 14 \pm 2 \text{ keV}$	n, p, α	27, 28, 30
10.989 ± 2.5			$\Gamma = 7 \pm 2 \text{ keV}$	n, p	27
11.072 ± 2.7	$\frac{1}{2}^{+}$		$\Gamma = 35 \pm 4 \ \mathrm{keV}$	n, p, α	27, 28, 30
11.188 ± 4	$(\frac{1}{2}^{-})$		$\Gamma = 17 \pm 4 \ \mathrm{keV}$	n, p, α	27, 28, 30
11.273 ± 3	-		$\Gamma = 7 \pm 2 \ \mathrm{keV}$	n, p	27
11.286 ± 7	$\frac{5}{2}^{+}$		$\Gamma = 22 \pm 5 \text{ keV}$	n, p, α	27, 28, 30
11.35 ± 25	$\frac{1}{2}^{+}$		$\Gamma = 272 \pm 31 \text{ keV}$	р	28
11.450 ± 3.5	$\frac{1}{2}$		$\Gamma = 38 \pm 7 \ \mathrm{keV}$	n, p, (α)	17, 27, 28, 30
11.478 ± 5			$\Gamma = 7 \pm 3 \text{ keV}$	n, p	27
11.502 ± 5	$(\frac{3}{2}^{-})$		$\Gamma = 4 \pm 2 \text{ keV}$	n, p, α	27, 28, 30
11.540 ± 7	$\frac{5}{2}$ +		$\Gamma = 22 \pm 5 \text{ keV}$	n, p, α	27, 28, 30
11.569 ± 7	$(T = \frac{3}{2})$		$\Gamma = 15 \pm 10 \ \mathrm{keV}$	n, p	27
11.603 ± 12	$\frac{3}{2}^{-}$		$\Gamma = 63 \pm 7 \ \mathrm{keV}$	n, p	27, 28
11.653 ± 4	$\frac{3}{2}^+; (\frac{3}{2})$		$\Gamma = 33 \pm 6 \ \mathrm{keV}$	n, p, (α)	12, 17, 27, 28, 30
11.84 ± 10			$\Gamma < 50 \text{ keV}$	n, p	27
11.93 ± 10			$\Gamma = 90 \text{ keV}$	n, p	27
12.04 ± 20	$\frac{1}{2}^{-}$		$\Gamma = 71 \pm 24 \text{ keV}$	p, α	12, 28, 30
12.136 ± 8	$\frac{3}{2}^{-}; \frac{3}{2}$		$\Gamma = 105 \pm 14 \text{ keV}$	n, p, (α)	27, 28, 30
12.222 ± 12	$\frac{3}{2}^{+}$		$\Gamma = 74 \pm 1 \ \mathrm{keV}$	n, p, α	27, 28, 30
12.522 ± 7	$\frac{1}{2}^{-}$		$\Gamma = 15 \pm 4 \ \mathrm{keV}$	р	28
12.577 ± 10	$\frac{5}{2}^{+}$		$\Gamma = 48 \pm 10 \ \mathrm{keV}$	p, α	28, 30
12.58 ± 25	$\frac{1}{2}^{-}; \frac{3}{2}$		$\Gamma = 285 \pm 48 \text{ keV}$	р	28
12.78 ± 10	$\frac{5}{2}^+; \frac{3}{2}$		$\Gamma = 95 \pm 38 ~\rm keV$	n, p, (α)	17, 27, 28, 30
12.86 ± 30	$\frac{3}{2}^+; \frac{3}{2}$		$\Gamma = 276 \pm 38 \text{ keV}$	р	28
12.94 ± 25	$\frac{5}{2}^{+}$		$\Gamma = 71 \pm 24 \ \mathrm{keV}$	p, α	28, 30
12.98 ± 50	$\frac{1}{2}^{-}$		$\Gamma = 124 \pm 38 \text{ keV}$	р	28
13.068 ± 4	$\frac{1}{2}^+$		$\Gamma \leq 10 \text{ keV}$	n, p, t	15, 27
13.09 ± 75	$\frac{3}{2}^{-}$		$\Gamma = 285 \pm 71 \ \mathrm{keV}$	р	28
13.17 ± 15			$\Gamma = 70 \text{ keV}$	n, p	27
13.245 ± 10	$\frac{1}{2}^{-}$		$\Gamma = 7 \text{ keV}$	\mathbf{t}	15
13.270 ± 10	$\frac{1}{2}^{+}$		$\Gamma = 4.5 \text{ keV}$	\mathbf{t}	15
13.317 ± 8	$\frac{7}{2}^{-}; (\frac{3}{2})$		$\Gamma = 28 \pm 6 \ \mathrm{keV}$	n, p, α	27, 28, 30, 33
13.36 ± 25	$\frac{3}{2}^{-}$		$\Gamma = 38 \pm 19 ~\rm keV$	р	28
13.532 ± 10	$\frac{1}{2}^{+}$		$\Gamma = 22 \text{ keV}$	\mathbf{t}	15
13.732 ± 11	$\frac{7}{2}^{-}; \frac{3}{2}$		$\Gamma = 52 \pm 10 \text{ keV}$	n, p, (α)	18, 27, 28, 30, 33
13.878 ± 15	$\frac{1}{2}^{+}$		$\Gamma = 101~{\rm keV}$	\mathbf{t}	15
14.04 ± 20	$\frac{5}{2}^{+}$		$\Gamma = 141 \pm 28 \ \mathrm{keV}$	р	28

Table 19.9 (continued) Energy levels of 19 F ^a)

$E_{\mathbf{x}}$	$J^{\pi}; T$	K^{π}	$ au_{\mathrm{m}}$ or	Decay	Reactions
$({\rm MeV}\pm{\rm keV})$			$\Gamma_{\rm c.m.}$		
14.10 ± 21	$\frac{3}{2}^{-}$		$\Gamma = 84 \pm 28 \ \mathrm{keV}$	р	12, 18, 28
14.147 ± 20	$\frac{1}{2}^{+}$		$\Gamma = 21 \text{ keV}$	\mathbf{t}	15
14.24 ± 15			$\Gamma = 350 \text{ keV}$	n, p	27
14.255 ± 15	$\frac{3}{2}^{+}$		$\Gamma = 51 \text{ keV}$	\mathbf{t}	15
14.33 ± 20	$\frac{3}{2}^{-}$		$\Gamma = 76 \pm 28 \ \mathrm{keV}$	р	28
14.352 ± 10	$\frac{1}{2}^{+}$		$\Gamma = 154 \text{ keV}$	\mathbf{t}	15
14.46 ± 25	$\frac{3}{2}^{+}$		$\Gamma = 179~{\rm keV}$	\mathbf{t}	15
14.46 ± 25	$\frac{5}{2}^{+}$		$\Gamma = 46 \text{ keV}$	\mathbf{t}	15
14.70 ± 20	$\frac{3}{2}^{-}$		$\Gamma = 124 \pm 38 \ \mathrm{keV}$	р	28
14.72 ± 70	$\frac{1}{2}^{-}$		$\Gamma = 257 \pm 67 \ \mathrm{keV}$	α	30
14.74 ± 50	$\frac{1}{2}^{+}$		$\Gamma = 361 \pm 67 ~\rm keV$	p, α	28, 30
14.78 ± 20	$\frac{5}{2}^{+}$			n, p	27, 28
14.92 ± 30	$\frac{7}{2}^{-}$			р	12,18,28
15.00 ± 20				n, p	27
15.36 ± 20	$\frac{1}{2}^{-}$			р	28
15.40 ± 30	$\frac{5}{2}^{+}$			р	28
15.56 ± 30					18
15.77 ± 21	$\frac{3}{2}^{-}$		$\Gamma = 150 \text{ keV}$	n, p	27
16.09 ± 50					12
16.20 ± 40	$\frac{3}{2}^{+}$			р	28
16.23 ± 30	$\frac{7}{2}^{-}$			р	28
16.28 ± 20	$\frac{3}{2}^{-}$		$\Gamma = 200 \text{ keV}$	n, p	27, 28
16.45 ± 50					12
16.80 ± 30				n, p	27
17.05 ± 40	$\frac{3}{2}^{-}$		$\Gamma = 331 \pm 67 \ \mathrm{keV}$	р	28
17.16 ± 40	$\frac{7}{2}^{-}$		$\Gamma = 323 \pm 67 ~\rm keV$	р	28
17.45 ± 30	$\frac{3}{2}^{-}$		$\Gamma = 32 \pm 19 \ \mathrm{keV}$	р	12, 28
17.65 ± 60	$\frac{7}{2}^{-}$		$\Gamma = 95 \pm 57 ~\rm keV$	р	28
17.93 ± 40	$\frac{3}{2}^{-}$		$\Gamma = 255 \pm 57 ~\rm keV$	р	28
18.03 ± 60	$\frac{7}{2}^{-}$		$\Gamma = 365 \pm 57 ~\rm keV$	р	12, 28
18.92 ± 30					12
19.07 ± 60	$\frac{3}{2}^{-}$		$\Gamma = 555 \pm 143 \text{ keV}$	р	28
19.83 ± 150	$\frac{5}{2}^{-}$		$\Gamma = 369 \pm 57 ~\rm keV$	р	28
19.89 ± 30	$\frac{3}{2}^{-}$		$\Gamma = 473 \pm 57 ~\rm keV$	р	12, 28
20.81 ± 50	$\frac{1}{2}^{-}$		$\Gamma = 412 \pm 57 ~\rm keV$	р	28
20.93 ± 50	$\frac{3}{2}^{-}$		$\Gamma = 317 \pm 48 \ \mathrm{keV}$	р	28
21.05 ± 40 ^b)	$\frac{7}{2}$		$\Gamma = 448 \pm 29 \ \mathrm{keV}$	р	28

Table 19.9 (continued) Energy levels of 19 F ^a)

^a) See also Tables 19.10 and 19.11.
^b) For evidence of additional states see reaction 36.
^c) See Table 19.14. 22
^d) See (89PR01).

$E_{\rm i}~({\rm MeV})$	J_{i}^{π}	$E_{\rm f}~({\rm MeV})$	Branching ratio $(\%)$	δ
0.110	$\frac{1}{2}^{-}$	0	100	
0.197	$\frac{5}{2}^{+}$	0	100	
		0.110	< 0.06	
1.35	$\frac{5}{2}^{-}$	0.110	96.8 ± 1	$0.0\pm0.7~^{\rm b})$
		0.197	3.2 ± 1	
1.46	$\frac{3}{2}^{-}$	0	20.5 ± 0.7	0.01 ± 0.03
		0.110	68.8 ± 0.9	0.248 ± 0.020
		0.197	10.7 ± 0.5	
		1.35	< 0.2 ^h)	
1.55	$\frac{3}{2}^{+}$	0	2.55 ± 0.10	
		0.110	4.85 ± 0.12	
		0.197	92.6 ± 0.2	
		1.35	< 0.011 ^h)	
		1.46	< 0.14 ^h)	
2.78	$\frac{9}{2}^{+}$	0.197	100	
3.91	$\frac{2}{3} +$	0	48 ± 2	
	2	0.110	17 ± 2	
		0.197	14 ± 2	
		1.55	21 ± 3	
4.00	$\frac{7}{2}$ -	0.197	18 ± 4	
	2	1.35	70 ± 4	
		1.46	12 ± 6	
4.03	$\frac{9}{2}$ -	1.35	100	
4.38 ^c)	$\frac{2}{7}$ +	0	< 5	
,	2	0.110	< 2	
		0.197	80.5 ± 2.0	0.155 ± 0.22
		2.78	19.5 ± 1.0	-0.16 ± 0.07
4.55 ^d)	$\frac{5}{2}^{+}$	0.197	69 ± 7	
,	2	1.35	5 ± 3	
		1.46	8 ± 3	
		1.55	18 ± 4	
4.56	$\frac{3}{2}$ -	0	36 ± 4	
	2	0.110	45 ± 5	
		0.197	9 ± 3	
		1.35	4 ± 3	
		1.46	< 4	
		1.55	6 ± 3	
4.65	$\frac{13}{2}^{+}$	2.78	100	$ M ^2 = 3.1 \pm 0.3$ W.u.
4.68	$\frac{2}{5}$ -	0.197	5.6 ± 0.9	$0 < \delta < 2.0$
	2	1.35	63.1 ± 3.8	$-0.22^{+0.14}$

Table 19.10 Radiative transitions in $^{19}{\rm F}$ $^{\rm a})$

$E_{\rm i} ({\rm MeV})$	J_{i}^{π}	$E_{\rm f}~({\rm MeV})$	Branching ratio $(\%)$	δ
5.11 ⁱ)	$\frac{5}{2}^{+}$	j)	79.7 ± 3.7	$\Gamma_{\gamma}/\Gamma = 0.83 \pm 0.10$
		1.46	31.3 ± 2.2	0.0 ± 0.24 or $2.0^{+1.5}_{-0.6}$
		1.35	< 1.6	
		1.46	10.4 ± 2.7	$ \delta < 1.4$
		1.55	1.8 ± 1.8	
		2.78	0.7 ± 0.6	
		3.91	5.4 ± 0.9	$\delta = 0.0 \pm 0.3$
		4.38	2.0 ± 0.5	
5.34	$\frac{1}{2}^{(+)}$	0	37 ± 4	
		0.110	42 ± 4	
		1.46	20 ± 2	
5.42	$\frac{7}{2}^{-}$	1.35	70	
		1.46	13	
		4.00	10	
		4.03	6	
5.46	$\frac{7}{2}^{+}$	0.197	4	
		1.35	32	
		1.55	5	
		2.78	59	
5.50	$\frac{3}{2}^{+}$	0.110	25	
		0.197	49	
		1.35	16	
		1.55	11	
5.54	$\frac{5}{2}^{+}$	0	7	
		0.197	47	
		1.46	45	
5.62	$\frac{3}{2}^{-}$	0.197	39 ± 4	
		1.35	61 ± 4	
5.94	$\frac{1}{2}^{+}$	0	7 ± 4	
		0.110	20 ± 6	
		0.197	2 ± 1	
		1.46	63 ± 6	0.25 ± 0.02
		1.55	< 2	
		3.91	8 ± 3	0.28 ± 0.09
6.07	$\frac{7}{2}^{+}$	0.197	54 ± 5	-0.26 ± 0.02
		1.35	19 ± 2	
		1.55	$1^{+1}_{-0.5}$	0.035 ± 0.023
		2.78	23 ± 3	0.06 ± 0.08
		4.38	4 ± 1	
6.09	$\frac{3}{2}$ -	0	25 ± 4	-0.021 ± 0.014

Table 19.10 (continued) Radiative transitions in $^{19}{\rm F}$ $^{\rm a})$

$E_{\rm i} ({\rm MeV})$	J_{i}^{π}	$E_{\rm f}~({\rm MeV})$	Branching ratio $(\%)$	δ
		0.110	61 ± 5	0.045 ± 0.021
		0.197	14 ± 3	0.014 ± 0.043
6.16	$\frac{7}{2}^{-}$	0.197	31 ± 3	-0.045 ± 0.025
		1.35	65 ± 4	0.077 ± 0.007
		1.46	1.3 ± 0.6	
		4.00	1.6 ± 0.6	
		4.03	2.3 ± 0.3	
6.28	$\frac{5}{2}^{+}$	0	14 ± 2	-0.05 ± 0.07
		0.197	4.2 ± 1.0	
		1.35	36 ± 2	-0.01 ± 0.09
		1.46	26 ± 2	-0.02 ± 0.04
		1.55	20 ± 2	0.11 ± 0.06
6.33	$\frac{7}{2}^{+}$	0.197	56 ± 3	-0.27 ± 0.24
	-	1.35	17 ± 2	-0.02 ± 0.03
		1.55	8.5 ± 1.5	0.00 ± 0.14
		4.38	18 ± 2	0.04 ± 0.20
6.497	$\frac{3}{2}^{+}$	0	38 ± 2	-0.06 ± 0.04 or 2.00 ± 0.17
	-	0.110	14 ± 2	0.00 ± 0.03
		0.197	9 ± 2	$0.3 \rightarrow 1.8$
		1.35	14 ± 2	-0.11 ± 0.09
		1.46	25 ± 2	0.00 ± 0.07
6.500	$\frac{11}{2}^{+}$	2.78	55	
	2	4.65	45	
6.53	$\frac{3}{2}^{+}$	0	29 ± 2	0.32 ± 0.04 or 0.90 ± 0.06
	-	0.110	59 ± 3	0.00 ± 0.02
		4.55	12 ± 2	-0.23 ± 0.13
6.55	$\frac{7}{2}(+)$	0.197	19 ± 2	0.03 ± 0.05
	2	1.35	55 ± 4	0.01 ± 0.030
		2.78	26 ± 3	0.05 ± 0.07
6.59	$\frac{9}{2}^{+}$	0.197	13 ± 2	-0.13 ± 0.13
	2	2.78	63 ± 3	-0.20 ± 0.20
		4.38	24 ± 2	0.02 ± 0.07
6.79	$\frac{3}{2}^{-}$	0	15 ± 2	-0.08 ± 0.03
	2	0.110	39 ± 2	0.11 ± 0.02
		0.197	13 ± 2	0.05 ± 0.06
		1.35	5.3 ± 0.8	
		1.46	25 ± 2	-0.13 ± 0.08
		3.91	2.6 ± 1.0	
6.84	$\frac{5}{2}^{+}$	0	9 ± 5	
	2	0.110	9 + 5	

Table 19.10 (continued) Radiative transitions in $^{19}{\rm F}$ $^{\rm a})$

$E_{\rm i}~({\rm MeV})$	J^{π}	$E_{\rm f}~({\rm MeV})$	Branching ratio (%)	δ
-1 (i	0.197	27 + 6	-0.5 ± 0.5
		1.35	10 ± 7	0.0 ± 0.0
		1.46	45 ± 8	-0.02 ± 0.11
6.89	3-	0	9+2	0.02 ± 0.11
0.00	2	1.35	61 ± 5	$0.22 \rightarrow 2.2$
		1.46	30 ± 5	0.12 ± 0.12 0.15 ± 0.12
6.93	<u>7</u> –	0.197	73 ± 3	-0.01 ± 0.03
0.000	2	1.35	10 ± 0 22 ± 2	0.01 ± 0.02
		2.78	2.4 ± 0.5	0.00 ± 0.16
		4.00	1.3 ± 0.5	0.000 ± 0.120
		4.03	1.3 ± 0.5	
7 17 ^e)	<u>11</u> -	4 00	5.6 ± 0.7	$\Gamma_{\rm e}/\Gamma = 0.025 \pm 0.003$
	2	4 03	90.9 ± 0.8	1 7/1 0.020 ± 0.000
		4.65	3.5 ± 0.5	
7.54	$\frac{5}{2}^+: T = \frac{3}{2}$	0.197	29 ± 3	0.09 ± 0.04
	$2^{-}, - 2^{-}$	1.35	1.2 ± 0.4	0.00 ± 0.01
		1.55	41 + 3	0.017 ± 0.015
		4.38	27 ± 3	0.042 ± 0.030
		5.11	1.7 ± 0.4	
7.66^{f}	$\frac{3}{2}^+$; $T = \frac{3}{2}$	0	38 ± 4	0.06 ± 0.02
)	2 / 2	0.197	13 ± 2	0.06 ± 0.07 or 3.5 ± 1.1
		1.55	36 ± 2	0.06 ± 0.04
		3.91	(3^{+3}_{-2})	
		4.55	5.1 ± 0.3	-0.11 ± 0.13
		5.11	5.9 ± 0.5	-0.04 ± 0.16
7.93	$\frac{7}{2}^{+}, \frac{9}{2}$	0.197	4	
	2 / 2	2.78	96	
7.94	$\frac{11}{2}$ +	2.78	10	
	2	4.65	90	
8.14	$\frac{1}{2}$ +	0	8 ± 1	
	2	0.110	24 ± 2	
		0.197	8 ± 1	
		1.55	2 ± 1	
		3.91	54 ± 2	$\Gamma_{\gamma}(\text{tot}) = 1.3 \text{ eV}$
		5.94	10 ± 0.5	
		6.26	3 ± 1	
8.25	$(\frac{5}{2}, \frac{7}{2})^{-}$	0.197	18 ± 7	
	· = = = 2 /	1.35	33 ± 10	
		1.46	24 ± 8	
		3.91	25 ± 8	

Table 19.10 (continued) Radiative transitions in $^{19}{\rm F}$ $^{\rm a})$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.77		\mathbf{D} 1: (\mathbb{M})	C
8.29 *) $\frac{42}{2}$ 4.03 93 ± 4 $\Gamma_{\gamma}(tot) = 72 \pm 8 \text{ meV}$ 4.65 7 ± 4 8.31 $\frac{5}{2}^{+}$ 0 12 ± 1 $\Gamma_{\gamma}(tot) = 0.71 \pm 0.17 \text{ eV}$ 1.55 48 ± 2 $\delta = 0.02 \pm 0.05 \text{ or } 2.2 \pm 0.6$ 4.38 40 ± 2 $\delta = -0.14 \pm 0.07$ 8.37 *) $\frac{7}{2}, \frac{5}{2}^{+}$ 0.197 13 ± 2 1.35 39 ± 3 2.78 30 ± 3 4.00 18 ± 3 8.58 $\frac{5}{2}^{+}$ 0 4 ± 1 0.197 38 ± 5 1.35 23 ± 3 1.55 20 ± 3 4.00 (4 ± 1 ^s)) 4.55 2.0 ± 0.7 5.42 4 ± 1 5.46 2.0 ± 0.5 5.62 2.2 ± 0.5 5.64 1.8 ± 0.5 6.16 2.5 ± 0.5 5.62 2.2 ± 0.5 5.94 1.8 ± 0.5 6.16 2.5 ± 0.5 5.62 2.2 ± 0.5 5.94 1.8 ± 0.5 6.16 2.5 ± 0.5 6.93 0.5 ± 0.3 8.59 $\frac{3}{2}^{-}$ 0 5 ± 2 $\Gamma_{\gamma}(tot) = 0.85 \pm 0.17 \text{ eV}$ 0.110 3 ± 1 0.197 42 ± 2 1.35 7 ± 1 1.55 28 ± 3 3.91 8 ± 1	E _i (MeV)	$\frac{J_i^n}{12-}$	$E_{\rm f}~({\rm MeV})$	Branching ratio (%)	<i>δ</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$8.29^{\text{g}})$	$\frac{15}{2}$	4.03	93 ± 4	$\Gamma_{\gamma}(\text{tot}) = 72 \pm 8 \text{ meV}$
8.31 $\frac{3}{2}^{+}$ 0 12±1 $\Gamma_{\gamma}(\text{tot}) = 0.71 \pm 0.17 \text{ eV}$ 1.55 48 ± 2 $\delta = 0.02 \pm 0.05 \text{ or } 2.2 \pm 0.6$ 4.38 40 ± 2 $\delta = -0.14 \pm 0.07$ 8.37 ^g) $\frac{7}{2}, \frac{5}{2}^{+}$ 0.197 13 ± 2 1.35 39 ± 3 2.78 30 ± 3 4.00 18 ± 3 8.58 $\frac{5}{2}^{+}$ 0 4 ± 1 0.197 38 ± 5 1.35 23 ± 3 1.55 20 ± 3 4.00 $(4 \pm 1 \ g))$ 4.55 2.0 ± 0.7 5.42 4 ± 1 5.46 2.0 ± 0.5 5.62 2.2 ± 0.5 5.94 1.8 ± 0.5 6.16 2.5 ± 0.5 6.93 0.5 ± 0.3 8.59 $\frac{3}{2}^{-}$ 0 5 ± 2 $\Gamma_{\gamma}(\text{tot}) = 0.85 \pm 0.17 \text{ eV}$ 0.110 3 ± 1 0.197 42 ± 2 1.35 7 ± 1 1.55 28 ± 3 3.91 8 ± 1		r +	4.65	7 ± 4	
$8.37 \ ^{e}) \qquad \begin{array}{c} 1.55 \\ 4.38 \\ 4.38 \\ 40 \pm 2 \\ 1.35 \\ 39 \pm 3 \\ 2.78 \\ 30 \pm 3 \\ 4.00 \\ 18 \pm 3 \\ 4.00 \\ 18 \pm 3 \\ 1.55 \\ 2.78 \\ 1.35 \\ 2.78 \\ 30 \pm 3 \\ 1.55 \\ 2.2 \pm 3 \\ 1.55 \\ 2.0 \pm 3 \\ 4.00 \\ (4 \pm 1 \ ^{e})) \\ 4.55 \\ 2.0 \pm 0.7 \\ 5.42 \\ 4 \pm 1 \\ 5.46 \\ 2.0 \pm 0.5 \\ 5.62 \\ 2.2 \pm 0.5 \\ 5.62 \\ 2.2 \pm 0.5 \\ 5.94 \\ 1.8 \pm 0.5 \\ 6.16 \\ 2.5 \pm 0.5 \\ 5.94 \\ 1.8 \pm 0.5 \\ 6.16 \\ 2.5 \pm 0.5 \\ 5.94 \\ 1.8 \pm 0.5 \\ 6.16 \\ 2.5 \pm 0.5 \\ 5.94 \\ 1.8 \pm 0.5 \\ 6.16 \\ 2.5 \pm 0.5 \\ 5.94 \\ 1.8 \pm 0.5 \\ 6.16 \\ 2.5 \pm 0.5 \\ 5.94 \\ 1.8 \pm 0.5 \\ 6.16 \\ 2.5 \pm 0.5 \\ 5.94 \\ 1.8 \pm 0.5 \\ 6.16 \\ 2.5 \pm 0.5 \\ 5.94 \\ 1.8 \pm 0.5 \\ 6.16 \\ 2.5 \pm 0.5 \\ 5.94 \\ 1.8 \pm 0.5 \\ 6.16 \\ 2.5 \pm 0.17 \text{ eV} \\ 0.110 \\ 3 \pm 1 \\ 0.197 \\ 42 \pm 2 \\ 1.35 \\ 7 \pm 1 \\ 1.55 \\ 2.8 \pm 3 \\ 3.91 \\ 8 \pm 1 \end{array}$	8.31	$\frac{5}{2}$	0	12 ± 1	$\Gamma_{\gamma}(\text{tot}) = 0.71 \pm 0.17 \text{ eV}$
$4.38 40 \pm 2 \delta = -0.14 \pm 0.07$ $8.37 \text{ g}) \frac{7}{2}, \frac{5}{2}^{+} 0.197 13 \pm 2$ $1.35 39 \pm 3$ $2.78 30 \pm 3$ $4.00 18 \pm 3$ $8.58 \frac{5}{2}^{+} 0 4 \pm 1$ $0.197 38 \pm 5$ $1.35 23 \pm 3$ $1.55 20 \pm 3$ $4.00 (4 \pm 1 \text{ g}))$ $4.55 2.0 \pm 0.7$ $5.42 4 \pm 1$ $5.46 2.0 \pm 0.5$ $5.62 2.2 \pm 0.5$ $5.94 1.8 \pm 0.5$ $6.16 2.5 \pm 0.5$ $6.93 0.5 \pm 0.3$ $8.59 \frac{3}{2}^{-} 0 5 \pm 2 \Gamma_{\gamma}(\text{tot}) = 0.85 \pm 0.17 \text{ eV}$ $0.110 3 \pm 1$ $0.197 42 \pm 2$ $1.35 7 \pm 1$ $1.55 28 \pm 3$ $3.91 8 \pm 1$			1.55	48 ± 2	$\delta = 0.02 \pm 0.05$ or 2.2 ± 0.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	4.38	40 ± 2	$\delta = -0.14 \pm 0.07$
$8.58 \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$	$8.37 {}^{ m g})$	$\frac{7}{2}, \frac{5}{2}^+$	0.197	13 ± 2	
$8.58 \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$			1.35	39 ± 3	
$8.58 \qquad \frac{5}{2}^{+} \qquad 0 \qquad 4 \pm 1 \\ 0.197 \qquad 38 \pm 5 \\ 1.35 \qquad 23 \pm 3 \\ 1.55 \qquad 20 \pm 3 \\ 4.00 \qquad (4 \pm 1^{-g})) \\ 4.55 \qquad 2.0 \pm 0.7 \\ 5.42 \qquad 4 \pm 1 \\ 5.46 \qquad 2.0 \pm 0.5 \\ 5.62 \qquad 2.2 \pm 0.5 \\ 5.94 \qquad 1.8 \pm 0.5 \\ 6.16 \qquad 2.5 \pm 0.5 \\ 6.93 \qquad 0.5 \pm 0.3 \\ 8.59 \qquad \frac{3}{2}^{-} \qquad 0 \qquad 5 \pm 2 \qquad \Gamma_{\gamma}(\text{tot}) = 0.85 \pm 0.17 \text{ eV} \\ 0.110 \qquad 3 \pm 1 \\ 0.197 \qquad 42 \pm 2 \\ 1.35 \qquad 7 \pm 1 \\ 1.55 \qquad 28 \pm 3 \\ 3.91 \qquad 8 \pm 1 \end{cases}$			2.78	30 ± 3	
8.58 $\frac{5}{2}^+$ 0 4±1 0.197 38±5 1.35 23±3 1.55 20±3 4.00 (4±1 [§])) 4.55 2.0±0.7 5.42 4±1 5.46 2.0±0.5 5.62 2.2±0.5 5.94 1.8±0.5 6.16 2.5±0.5 6.93 0.5±0.3 8.59 $\frac{3}{2}^-$ 0 5±2 $\Gamma_{\gamma}(tot) = 0.85\pm0.17 \text{ eV}$ 0.110 3±1 0.197 42±2 1.35 7±1 1.55 28±3 3.91 8±1			4.00	18 ± 3	
$8.59 \frac{3}{2}^{-} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$	8.58	$\frac{5}{2}^{+}$	0	4 ± 1	
$8.59 \frac{3}{2}^{-} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$			0.197	38 ± 5	
$8.59 \frac{3}{2}^{-} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$			1.35	23 ± 3	
$8.59 \frac{3}{2}^{-} \qquad \begin{pmatrix} 4.00 & (4 \pm 1^{\text{ g}})) \\ 4.55 & 2.0 \pm 0.7 \\ 5.42 & 4 \pm 1 \\ 5.46 & 2.0 \pm 0.5 \\ 5.62 & 2.2 \pm 0.5 \\ 5.94 & 1.8 \pm 0.5 \\ 6.16 & 2.5 \pm 0.5 \\ 6.93 & 0.5 \pm 0.3 \\ 0 & 5 \pm 2 \\ 0.110 & 3 \pm 1 \\ 0.197 & 42 \pm 2 \\ 1.35 & 7 \pm 1 \\ 1.55 & 28 \pm 3 \\ 3.91 & 8 \pm 1 \end{pmatrix}$			1.55	20 ± 3	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4.00	$(4 \pm 1 ^{\rm g}))$	
$8.59 \frac{3}{2}^{-} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$			4.55	2.0 ± 0.7	
$8.59 \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$			5.42	4 ± 1	
$5.62 2.2 \pm 0.5 \\ 5.94 1.8 \pm 0.5 \\ 6.16 2.5 \pm 0.5 \\ 6.93 0.5 \pm 0.3 \\ 8.59 \frac{3}{2}^{-} 0 5 \pm 2 \Gamma_{\gamma}(\text{tot}) = 0.85 \pm 0.17 \text{ eV} \\ 0.110 3 \pm 1 \\ 0.197 42 \pm 2 \\ 1.35 7 \pm 1 \\ 1.55 28 \pm 3 \\ 3.91 8 \pm 1 \end{bmatrix}$			5.46	2.0 ± 0.5	
$5.94 1.8 \pm 0.5 \\ 6.16 2.5 \pm 0.5 \\ 6.93 0.5 \pm 0.3 \\ 8.59 \frac{3}{2}^{-} 0 5 \pm 2 \Gamma_{\gamma}(\text{tot}) = 0.85 \pm 0.17 \text{ eV} \\ 0.110 3 \pm 1 \\ 0.197 42 \pm 2 \\ 1.35 7 \pm 1 \\ 1.55 28 \pm 3 \\ 3.91 8 \pm 1 \end{bmatrix}$			5.62	2.2 ± 0.5	
$8.59 \qquad \begin{array}{cccc} 6.16 & 2.5 \pm 0.5 \\ 6.93 & 0.5 \pm 0.3 \\ 0 & 5 \pm 2 & \Gamma_{\gamma}(\text{tot}) = 0.85 \pm 0.17 \text{ eV} \\ 0.110 & 3 \pm 1 \\ 0.197 & 42 \pm 2 \\ 1.35 & 7 \pm 1 \\ 1.55 & 28 \pm 3 \\ 3.91 & 8 \pm 1 \end{array}$			5.94	1.8 ± 0.5	
8.59 $\frac{3}{2}^{-}$ 0 5 ± 0.3 0 5 ± 2 $\Gamma_{\gamma}(\text{tot}) = 0.85 \pm 0.17 \text{ eV}$ 0.110 3 ± 1 0.197 42 ± 2 1.35 7 ± 1 1.55 28 ± 3 3.91 8 ± 1			6.16	2.5 ± 0.5	
8.59 $\frac{3}{2}^{-}$ 0 5 ± 2 $\Gamma_{\gamma}(\text{tot}) = 0.85 \pm 0.17 \text{ eV}$ 0.110 3 ± 1 0.197 42 ± 2 1.35 7 ± 1 1.55 28 ± 3 3.91 8 ± 1			6.93	0.5 ± 0.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.59	$\frac{3}{2}^{-}$	0	5 ± 2	$\Gamma_{\gamma}(\text{tot}) = 0.85 \pm 0.17 \text{ eV}$
$\begin{array}{cccc} 0.197 & 42 \pm 2 \\ 1.35 & 7 \pm 1 \\ 1.55 & 28 \pm 3 \\ 3.91 & 8 \pm 1 \end{array}$		2	0.110	3 ± 1	
$\begin{array}{cccc} 1.35 & 7 \pm 1 \\ 1.55 & 28 \pm 3 \\ 3.91 & 8 \pm 1 \end{array}$			0.197	42 ± 2	
$\begin{array}{cccc} 1.55 & 28\pm 3 \\ 3.91 & 8\pm 1 \end{array}$			1.35	7 ± 1	
3.91 $8+1$			1.55	28 ± 3	
0.01 0.11			3.91	8 ± 1	
$4.55 3.6 \pm 0.6$			4.55	3.6 ± 0.6	
$5.11 1.0 \pm 0.5$			5.11	1.0 ± 0.5	
$5.50 1.5 \pm 0.5$			5.50	1.5 ± 0.5	
$6.28 0.6 \pm 0.2$			6.28	0.6 ± 0.2	
$6.79 0.3 \pm 0.1$			6.79	0.3 ± 0.1	
8.63 g) $\frac{7}{2}$ 0.197 34 ± 2	$8.63 {}^{ m g})$	$\frac{7}{2}$ -	0.197	34 ± 2	
$1.35 6 \pm 1$,	4	1.35	6 ± 1	
1.46 6 ± 1			1.46	6 ± 1	
2.78 38 ± 2			2.78	38 ± 2	
4.00 13 ± 1			4.00	13 ± 1	
4.03 3 ± 1			4.03	3 ± 1	
8.65 $\frac{1}{2}^+$ 0.110 53 ± 6	8.65	$\frac{1}{2}$ +	0.110	53 ± 6	
1.46 23 ± 6		2	1.46	23 ± 6	

Table 19.10 (continued) Radiative transitions in $^{19}{\rm F}$ $^{\rm a})$

$E_{\rm i}~({\rm MeV})$	$J_{ m i}^{\pi}$	$E_{\rm f}~({\rm MeV})$	Branching ratio (%)	δ
		3.91	24 ± 6	
8.79	$\frac{1}{2}^+$; $T = \frac{3}{2}$	0	1.2 ± 0.4	
		0.110	30 ± 1	
		0.197	0.3 ± 0.2	
		1.46	22 ± 1	
		1.55	8 ± 1	
		3.91	22 ± 1	
		5.34	0.5 ± 0.1	
		5.94	1.8 ± 0.2	
		6.09	1.7 ± 0.2	
		6.26	0.2 ± 0.1	
		6.49	6 ± 1	
		6.53	2.1 ± 0.2	
		6.79	1.2 ± 0.3	
		6.99	0.5 ± 0.1	
		7.26	1.7 ± 0.2	
		7.36	0.6 ± 0.1	
		7.66	0.2 ± 0.1	
$8.86^{\rm g})$	$< \frac{9}{2}$	1.35	100	
8.92	$\frac{3}{2}^{-}$	0	5 ± 2	0.1 ± 0.3 or 1.7 ± 0.9
		0.110	10 ± 2	0.20 ± 0.04 or 2.9 ± 0.4
		0.197	24 ± 7	1.0 ± 0.8
		1.46	25 ± 7	3.0 ± 2.5
		1.55	23 ± 7	$0.30\pm0.06~{\rm or}~\infty$
		3.91	13 ± 7	
$8.95^{\rm g})$	$\frac{11}{2}^{-}$	2.78	50 ± 2	$\Gamma_{\gamma}(\text{tot}) = 230 \pm 30 \text{ meV}$
		4.00	26 ± 2	
		4.03	9 ± 1	
		4.65	10 ± 2	
		5.42	5 ± 1	
$9.03^{\rm g})$	$\frac{5}{2}, \frac{7}{2}$	0.197	44 ± 5	
		4.38	30 ± 5	
		6.07	26 ± 4	
9.100	$\frac{7}{2}$	0.197	2.0 ± 0.3	$\delta = 0.0 \pm 0.2$ or 2.5 ± 0.6
		1.35	2.7 ± 0.3	-0.1 ± 0.3 or ∞
		2.78	47 ± 2	-0.09 ± 0.10
		4.00	2.5 ± 0.3	0.3 ± 0.3 or -2.2 ± 0.9
		4.03	7.0 ± 0.5	-0.08 ± 0.01 or ∞
		4.68	2.0 ± 0.3	-0.09 ± 0.34 or ∞
		5.11	1.2 ± 0.2	0.0 ± 0.2 or 3.0 ± 1.6

Table 19.10 (continued) Radiative transitions in $^{19}{\rm F}$ $^{\rm a})$

$E_{\rm i}~({\rm MeV})$	$J_{ ext{i}}^{\pi}$	$E_{\rm f}~({\rm MeV})$	Branching ratio (%)	δ
· /	1	5.42	19 ± 2	0.25 ± 0.10 or -6.0 ± 5.5
		5.54	1.3 ± 0.7	0.1 ± 0.3
		5.62	3.3 ± 0.3	0.17 ± 0.10
		6.10	12 ± 1	0.0 ± 0.3
9.101 ^g)	$\frac{7}{2}^+, \frac{9}{2}^+$	2.78	11 ± 2	
,		4.00	24 ± 2	
		4.38	24 ± 2	
		6.07	15 ± 2	
		6.33	10 ± 2	
$9.17^{\rm g})$	$\frac{1}{2}^{+}$	0.197	51 ± 2	
	_	1.55	30 ± 2	
		4.56	19 ± 2	
9.20 ^g)	$\frac{3}{2}$	0	18 ± 2	
	_	0.110	46 ± 3	
		0.197	10 ± 4	
		1.35	26 ± 3	
$9.27^{\ g})$	$\frac{11}{2}^+, \frac{9}{2}^+$	2.78	27 ± 2	
		4.38	18 ± 2	
		4.65	55 ± 3	
$9.28 {}^{ m g})$	$(\frac{7}{2}, \frac{9}{2})^+$	4.00	58 ± 3	
		4.03	42 ± 3	
9.32	$\frac{1}{2}^{+}$	0	30 ± 1	0.10 ± 0.08 or 1.4 ± 0.3
		0.197	12 ± 1	$0.1\pm0.4~\mathrm{or}~\geq0.6$
		1.46	28 ± 1	0.1 ± 0.2
		1.55	17 ± 1	-0.2 ± 0.3 or ≤ 0.9
		3.91	3.0 ± 0.3	$0.40\pm0.05~\mathrm{or}~\geq2.3$
		4.56	3.2 ± 0.3	0.2 ± 0.3
		4.68	6.8 ± 0.5	0.1 ± 0.2
9.33 g)	$< \frac{5}{2}$	1.55	100	
$9.51 {}^{ m g})$	$\frac{5}{2}^+, \frac{7}{2}^+$	1.35	14 ± 2	
		1.55	14 ± 2	
		2.78	72 ± 3	
9.54	$\frac{5}{2}^{+}$	1.35	26 ± 2	0.3 ± 1.1
		4.56	15 ± 1	0.7 ± 0.4
		4.68	12 ± 1	0.3 ± 0.3
		5.11	29 ± 2	0.3 ± 0.2
		7.54	10 ± 1	0.7 ± 0.3
		7.66	6 ± 1	0.4 ± 0.3 or $1.0\rightarrow0.4$
		8.02	2 ± 1	
9.566	$\frac{3}{2}^{-}$	0.197	77 ± 10	

Table 19.10 (continued) Radiative transitions in $^{19}{\rm F}$ $^{\rm a})$

$E_{\rm i}~({\rm MeV})$	$J_{ m i}^{\pi}$	$E_{\rm f}~({\rm MeV})$	Branching ratio $(\%)$	δ
		6.26	23 ± 6	
9.575	$\frac{7}{2}^{+}$	1.46	26 ± 2	-0.1 ± 0.2
		3.91	4 ± 1	-6 ± 7
		4.55	17 ± 2	
		6.09	38 ± 2	1.8 ± 1.0
		7.54	11 ± 2	-0.3 ± 0.8
		7.66	4 ± 1	-0.1 ± 1.3
9.59	$\frac{7}{2}$	1.35	32 ± 4	$0.0\pm0.5~\mathrm{or}~3.7\pm2.5$
	_	2.78	30 ± 2	0.1 ± 0.2 or 11 ± 5
		4.00	17 ± 2	-0.7 ± 1.1
		4.55	21 ± 2	
9.64 ^g)	$\frac{3}{2}, \frac{5}{2}$	0.197	13 ± 3	
		1.35	61 ± 7	
		4.55	26 ± 6	
$9.65 {}^{ m g})$	$\frac{3}{2}, \frac{5}{2}$	1.35	41 ± 9	
		1.55	59 ± 9	
9.67	$\frac{3}{2}^{+}$	0	22 ± 2	-0.72 ± 0.04 or -10 ± 4
	2	0.110	20 ± 2	0.00 ± 0.05
		0.197	9 ± 1	0.30 ± 0.03 or 1.7 ± 0.3
		1.35	9 ± 1	0.00 ± 0.03
		1.46	5 ± 1	0.00 ± 0.07
		1.55	10 ± 1	0.00 ± 0.06 or -4.2 ± 1.3
		3.91	5.5 ± 0.5	0.12 ± 0.03 or -7.5 ± 2.0
		4.38	0.5 ± 0.2	
		4.55	8 ± 1	0.00 ± 0.03 or 4.7 ± 0.5
		5.11	1.5 ± 0.3	0.00 ± 0.05
		5.34	1.0 ± 0.2	-0.22 ± 0.03 or 3.3 ± 0.2
		6.84	1.0 ± 0.3	0.05 ± 0.02 or 3.3 ± 0.2
		7.54	4.0 ± 0.3	0.02 ± 0.03
		7.66	3.5 ± 0.3	0.14 ± 0.04
9.71 ^g)	$\frac{9}{2}^+, \frac{11}{2}^-$	2.78	19 ± 3	
,		4.03	80 ± 4	
		4.65	1 ± 1	
9.82	$\frac{5}{2}^{-}$	0.110	0.7 ± 0.2	
	2	0.197	41 ± 2	0.00 ± 0.05
		1.35	2.4 ± 0.5	-0.6 ± 0.2
		1.46	8 ± 1	-0.07 ± 0.05 or 2.7 ± 0.7
		1.55	30 ± 2	0.01 ± 0.04
		4.00	1.0 ± 0.2	0.0 ± 0.2 or ∞
		4.55	0.5 ± 0.1	0.30 ± 0.15

Table 19.10 (continued) Radiative transitions in $^{19}{\rm F}$ $^{\rm a})$

$E_{\rm i}~({\rm MeV})$	J^{π}_{i}	$E_{\rm f}~({\rm MeV})$	Branching ratio (%)	δ
		4.68	4.8 ± 0.3	$0.0 \pm 0.1 \text{ or } -1.7 \pm 0.4$
		5.11	0.3 ± 0.2	$0.4\pm0.5~{\rm or}~\infty$
		5.42	10 ± 1	-0.04 ± 0.05 or ∞
		5.54	0.6 ± 0.2	0.0 ± 0.2
		5.62	0.7 ± 0.2	0.33 ± 0.15 or -3.4 ± 1.2
9.83 g)	$\frac{11}{2} \rightarrow \frac{15}{2}$	4.65	100	
9.87	$\frac{11}{2}^{-}$	2.78	63 ± 3	0.0 ± 0.2
		4.00	4.2 ± 1.0	
		4.03	24 ± 2	-0.43 ± 0.05 or 2.2 ± 0.2
		4.65	2.1 ± 0.8	
		6.10	3.8 ± 0.8	0.2 ± 0.1 or 2.7 ± 1.0
		6.50	1.9 ± 0.7	-0.4 ± 0.7
		8.29	1.0 ± 0.3	
9.89	$\frac{1}{2}^{+}$	0.197	15 ± 8	
		1.46	15 ± 5	
		3.91	32 ± 2	
		5.94	4 ± 1	
		6.09	13 ± 3	
		6.53	16 ± 2	
		7.66	5 ± 1	
9.93 g)	$\frac{9}{2}^{+}$	0.197	1 ± 1	
		2.78	19 ± 1	
		5.46	10 ± 1	
		6.07	7 ± 1	
		6.33	8 ± 1	
		6.50	54 ± 2	
$10.09 \ ^{\rm g})$	$\frac{5}{2}^{-}, \frac{7}{2}^{-}$	0.197	10 ± 1	
		1.35	35 ± 2	
		4.00	19 ± 2	
		5.42	26 ± 2	
		6.07	10 ± 1	
$10.14 \ ^{\rm g})$	$\frac{3}{2}^{-}$	1.35	29 ± 4	
		1.46	71 ± 4	
$10.37 {}^{ m g})$	$\frac{7}{2} \rightarrow \frac{11}{2}$	4.03	100	
$10.41 \ ^{\rm g})$	$\frac{13}{2}^{+}$	2.78	3 ± 1	
		4.68	88 ± 1	
		6.50	9 ± 1	

Table 19.10 (continued) Radiative transitions in $^{19}{\rm F}$ $^{\rm a})$

-_

^a) For references and other information see Tables 19.7 in (78AJ03, 83AJ01) and (82OL02). See also Tables 19.11, 19.12 and 19.15 here. See also Table 2 here and (87FO03) for B(E2). ^b) $|M|^2 = 21.4 \pm 0.3$ W.u.

Table 19.10 (continued) Radiative transitions in 19 F ^a)

^c) $\Gamma_{\gamma}/\Gamma = 0.91 \pm 0.05.$

d) $\Gamma_{\gamma}/\Gamma = 0.76 \pm 0.15$ for $4.55 \rightarrow 0.20$ transition.

^e) (85DI16).

f) $\Gamma_{\gamma} = 4.7 \text{ eV}, \ \Gamma_{\gamma}/\Gamma = 0.65 \pm 0.10.$

^g) Branching ratios are the relative intensities at $\theta = 55^{\circ}$.

^h) (82VE05).

ⁱ) (80VE1A) and private communication to Fay Ajzenberg-Selove (1986).

^j) g.s. + 0.110 + 0.197.

2. ${}^{12}C({}^{7}Li, {}^{7}Li'){}^{12}C$

 $E_{\rm b} = 16.395$

Vector analyzing power measurements for the elastic scattering have been reported at $E(^{7}\text{Li}) = 21.1 \text{ MeV} (84\text{MO06})$. Fusion cross sections have been measured by (82DE30). For other channels in the interaction of $^{12}\text{C} + ^{7}\text{Li}$ see (78AJ03, 83AJ01, 87AJ02) for earlier work. More recently, neutron yield spectra for 40 MeV ⁷Li on ^{12}C were measured by (87SC11). The $^{12}\text{C}(^{7}\text{Li}, ^{7}\text{Be})^{12}\text{B}$ reaction was studied at projectile energies of 14, 21, and 26 MeV/A by (90NA24). Measurements and analysis of elastic breakup of 54 MeV ⁷Li on ^{12}C are discussed in (92GA03). See also the coupled-channels investigation of the effects of projectile breakup and target excitations in the scattering of polarized ⁷Li by ^{12}C at $E_{\text{lab}} = 21 \text{ MeV}$ by (88SA10). An evaluation of hypernuclear production cross-section by projectile fragmentation in $^{7}\text{Li} + ^{12}\text{C}$ at 3.0 GeV/A is presented in (89BA2N).

3. ¹²C(⁹Be, d)¹⁹F
$$Q_{\rm m} = -0.301$$

For excitation curves and angular distributions involving unresolved states and ${}^{19}F^*$ (2.78) see (83AJ01, 87AJ02).

4. (a) ${}^{12}C({}^{11}B, \alpha){}^{19}F$	$Q_{\rm m} = 7.730$
(b) ${}^{12}C({}^{12}C, \alpha p){}^{19}F$	$Q_{\mathrm{m}} = -8.227$
(c) ${}^{12}C({}^{14}N, {}^{7}Be){}^{19}F$	$Q_{\rm m} = 11.420$

States in ¹⁹F with $4.3 < E_x < 11.0$ MeV were observed in reaction (a) by (89PR01) and are displayed in Table 19.12.

For reaction (b) see (83AJ01, 87AJ02). See also (88MA07).

$^{19}{\rm F}^{*}~({\rm MeV})$	J^{π}	$ au_{ m m}$	Refs.
0.110	$\frac{1}{2}^{-}$	$0.853\pm0.010~\mathrm{ns}$	mean: see $(72AJ02)$
0.197	$\frac{5}{2}^{+}$	$128.8\pm1.5~\mathrm{ns}$	mean: see $(78AJ03)$
1.35	$\frac{5}{2}^{-}$	4.17 ± 0.06 ps $^{\rm a})$	(83BI03)
1.46	$\frac{3}{2}^{-}$	$90 \pm 20 \text{ fs}$	с)
1.55	$\frac{3}{2}^{+}$	$5\pm3~{ m fs}$	с)
2.78	$\frac{9}{2}^{+}$	280 ± 30 fs	с)
3.91	$\frac{3}{2}^{+}$	$9\pm5~\mathrm{fs}$	с)
4.00	$\frac{7}{2}^{-}$	$19\pm7~{ m fs}$	с)
4.03	$\frac{9}{2}^{-}$	$67 \pm 5 \text{ fs}$	с)
4.38	$\frac{7}{2}^{+}$	< 11 fs	с)
4.55	$\frac{5}{2}^{+}$	$< 50 {\rm ~fs}$	с)
4.56	$\frac{3}{2}^{-}$	17^{+10}_{-8} fs	с)
4.65	$\frac{13}{2}^{+}$	3.68 ± 0.38 ps ^b)	(83BI03)
4.68	$\frac{5}{2}$ -	$15.4\pm3.0~\mathrm{fs}$	с)
5.11	$\frac{5}{2}^{+}$	$< 30 {\rm ~fs}$	с)
5.34	$\frac{1}{2}^{(+)}$	$\leq 0.1 \text{ fs}$	c)
5.42	$\frac{7}{2}$ -	$\leq 0.9 \text{ fs}$	c)
5.46	$\frac{7}{2}^{+}$	$< 0.26 { m ~fs}$	c)
5.62	$\frac{5}{2}$ -	$\leq 1.3 \; {\rm fs}$	с)

Table 19.11 Lifetimes of some ¹⁹F states

^a) $|M|^2 = 21.4 \pm 0.3$ W.u. (83BI03) for the E2 transition $[1.35 \rightarrow 0.11]$. See also (85KE1C) and Table 19.8 in (83AJ01). ^b) $|M|^2 = 3.1 \pm 0.3$ W.u. (83BI03). See also (83AJ01). ^c) See Table 19.8 in (83AJ01) and Table 19.12 here.

${}^{19}\mathrm{F}^{*}~\mathrm{(MeV)}$ b)	$J^{\pi b}$	Γ_{γ}/Γ	$\Gamma_{\alpha} \ (eV)^{c})$	Γ (eV) ^d)
4.378	$\frac{7}{2}^{+}$	> 0.96		$> 6 \times 10^{-2}$
4.648	$\frac{13}{2}^{+}$	> 0.96		$(3.0 \pm 0.4) \times 10^{-4}$
4.683	$\frac{5}{2}^{-}$	> 0.85	$(2.0 \pm 0.3) \times 10^{-3}$	$(4.3 \pm 0.8) \times 10^{-2}$
5.107	$\frac{5}{2}^{+}$	0.97 ± 0.03	$(4.5 \pm 2.7) \times 10^{-3}$	$> 2 \times 10^{-2}$
5.418	$\frac{7}{2}^{-}$	0.040 ± 0.007	2.6 ± 0.7	
5.464	$\frac{7}{2}^{+}$	< 0.028	> 18	
6.070	$\frac{7}{2}^{+}$	< 0.025	1200	1200
6.100	$\frac{9}{2}^{-}$	< 0.038		
6.161	$\frac{7}{2}^{-}$	0.206 ± 0.017	2.9 ± 0.8	
6.330	$\frac{7}{2}^{+}$	< 0.017	2400	2400
6.500	$\frac{11}{2}^{+}$	>0.18 $^{\rm e})$	≥ 2.4	
6.592	$\frac{9}{2}^{+}$	0.044 ± 0.006	7.3 ± 1.7	
6.927	$\frac{7}{2}^{-}$	< 0.008	2400	2400
7.166	$\frac{11}{2}^{-}$	0.025 ± 0.003	6.7 ± 1.1	
8.288	$\frac{13}{2}^{-}$	e)	900 ± 140	900 ± 140
8.629	$\frac{7}{2}^{-}$	< 0.006	66 ± 24	66 ± 24
8.953	$\frac{11}{2}^{-}$	< 0.002	3570 ± 50	3570 ± 50
9.100		e)		
9.710	$\frac{11}{2}^{-}$	< 0.007	124 ± 30	124 ± 30
9.834	$\frac{11}{2}, \frac{13}{2}$	0.045 ± 0.009	1.7 ± 0.5	< 200
9.873	$\frac{11}{2}^{-}$	0.43 ± 0.04	1.4 ± 0.3	< 500
$9.895^{\rm f})$		< 0.01		
10.365	$\frac{7}{2} - \frac{11}{2}$	< 0.002	$(3.0\pm1.5)\times10^3$	$(3.0\pm1.5)\times10^3$
10.411	$\frac{13}{2}^+$	0.010 ± 0.002	246 ± 57	310 ± 110
$10.927 {\rm \ f})$		0.051 ± 0.004		

Table 19.12 States in $^{19}{\rm F}$ from $^{12}{\rm C}(^{11}{\rm B},\,\alpha)$ ^)

^a) (89PR01).
^b) Cited from (87AJ02).
^c) See Table 2 of (89PR01).
^d) See Table 1 of (89PR01) for references.
^e) Unresolved doublet.

^f) New level observed in (89PR01). The uncertainties in the excitation energies are $\pm 5 \text{ keV}$ and ± 8 keV for the 9.895 MeV and 10.927 MeV levels respectively.

5. (a)
$${}^{13}C({}^{6}Li, t){}^{16}O$$
 $Q_m = 6.998$ $E_b = 18.698$
(b) ${}^{13}C({}^{6}Li, \alpha){}^{15}N$ $Q_m = 14.684$
(c) ${}^{13}C({}^{6}Li, {}^{6}Li'){}^{13}C$
(d) ${}^{13}C({}^{6}Li, p){}^{18}O$ $Q_m = 10.704$

Uncorrelated structures have been observed in the excitation functions for reactions (a) and (b). Angular distributions have been measured for reaction (d) at $E(^{6}\text{Li}) = 28 \text{ MeV}$ (88SM01). See also ¹⁸O in the present review and see ¹³C and ¹⁵N in (91AJ01). Fusion cross sections have also been measured.

6.
$${}^{13}C({}^{10}B, \alpha){}^{19}F$$
 $Q_{\rm m} = 14.238$

Cross sections were measured for $E(^{10}\text{B}) = 17.16-31.32$ MeV at $\theta_{\text{lab}} = 14.3^{\circ}-41.6^{\circ}$ (88MA07). Several excited states in ¹⁹F were studied. A fluctuation and resonance analysis was carried out.

7. ${}^{13}C({}^{9}Be, t){}^{19}F$ $Q_{\rm m} = 1.010$

See (83AJ01).

8. (a) ¹⁴N(⁷Li, d)¹⁹F $Q_m = 6.122$ (b) ¹⁴N(¹²C,⁷Be)¹⁹F $Q_m = -11.420$ (c) ¹⁴N(¹⁴N, 2 α p)¹⁹F $Q_m = -4.926$

See (87AJ02).

9. ${}^{15}N(\alpha, \gamma){}^{19}F$ $Q_{\rm m} = 4.014$

Resonances in the yield of γ -rays are observed below $E_{\alpha} = 8.1$ MeV ($E_{\rm x} = 10.4$ MeV): the parameters for these are displayed in Table 19.13. Branching ratios are shown in Table 19.10 and $\tau_{\rm m}$ measurements in Table 19.11. The J^{π} values shown in Table 19.13 are based on correlation and angular distribution measurements and on branching ratio determinations. In work reported since the previous review (87AJ02), measurements were made by (87MA31) for the resonance at $E_{\rm x} = 4.550$ or 4.556 MeV. Widths of nine states between $E_{\rm x} = 8.288$ and 10.411 MeV were measured by (88HE03). These new results are included in Table 19.13. See also the study by (89GA06) of the T = 3/2 levels at $E_{\rm x} = 7.538$, 7.660, 9.927 MeV.

$E_{\alpha} (\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\rm c.m.} \ (\rm keV)$	$\omega\gamma~({\rm eV})$	J^{π}	$E_{\rm x} ({\rm MeV} \pm {\rm keV})$
$0.679^{-k})$	$[\Gamma_{\alpha} = (3.2 \pm 0.7) \times 10^{-5} \text{ eV}]$	$(9.7 \pm 2.0) \times 10^{-5}$	$\frac{5}{2}^{+}$	4.550
$0.687^{-k})$	$[\Gamma_{\alpha} < 5 \times 10^{-6} \text{ eV}]$	$< 1 \times 10^{-5}$	$\frac{3}{2}^{-}$	4.556
0.85	$(42.8 \pm 8.5) \times 10^{-6}$ b)	$(6.0 \pm 1.0) \times 10^{-3}$	$\frac{5}{2}^{-}$	4.681 ± 1
1.385 ± 3		$(13 \pm 8) \times 10^{-3} \text{ c})$	$\frac{5}{2}^{+}$	5.105 ± 2
1.678 ± 3	i)	1.64 ± 0.16	$\frac{1}{2}^{(+)}$	5.337 ± 2
1.790		0.42 ± 0.09 ^c)	$\frac{7}{2}^{-}$	5.427
1.839 ± 2	< 1	2.5 ± 0.4 $^{\rm c})$	$\frac{7}{2}^{+}$	5.465
1.883 ± 3	4 ± 1	4.2 ± 1.1 ^c)	$\frac{3}{2}^{+}$	5.500
1.930		0.48 ± 0.11 ^c)	$\frac{5}{2}^{+}$	5.54
2.035 ± 4		0.37 ± 0.09	$\frac{3}{2}^{-}$	5.620
2.441 ± 4		0.53 ± 0.13	$\frac{1}{2}^{+}$	5.938 ± 3
2.608 ± 2		2.70 ± 0.54	$\frac{7}{2}^{+}$	6.070 ± 1
2.631 ± 4		4.50 ± 0.90	$\frac{3}{2}^{-}$	6.088 ± 3
2.722 ± 2		2.40 ± 0.60	$\frac{7}{2}^{-}$	6.160 ± 1
2.873 ± 3		1.0 ± 0.2	$\frac{5}{2}^{+}$	6.282 ± 2
2.935 ± 3		0.76 ± 0.15	$\frac{7}{2}^{+}$	6.330 ± 2
3.1468 ± 1.5		1.7 ± 0.3	$\frac{3}{2}^{+}$	6.4976 ± 1.5
3.1498 ± 1.5		2.3 ± 0.4	$\frac{11}{2}^{+}$	6.5000 ± 1.5
3.183 ± 2		2.4 ± 0.4	$\frac{3}{2}^{+}$	6.526 ± 2
3.218 ± 2		0.63 ± 0.13	$\frac{7}{2}$	6.554 ± 2
3.267 ± 2		1.6 ± 0.3	$\frac{9}{2}^+$	6.592 ± 2
3.511 ± 3		10.9 ± 1.5	$\frac{3}{2}^{-}$	6.785 ± 2
3.576 ± 3		1.0 ± 0.2	$\frac{5}{2}$	6.836 ± 2
3.645 ± 5		6.1 ± 1.3	$\frac{3}{2}^{-}$	6.891 ± 4
3.688 ± 3		9.7 ± 1.4	$\frac{7}{2}$	6.925 ± 2
3.993 ± 2		1.00 ± 0.12 ^j)	$\frac{11}{2}^{-}$	7.1662 ± 0.7
4.465		17.0 ± 2.7	$\frac{5}{2}^+; T = \frac{3}{2}$	7.538 ± 2
4.618		3.7 ± 0.9	$\frac{3}{2}^+; T = \frac{3}{2}$	7.659 ± 2
4.96 ± 3		2.3 ± 0.4	$\frac{7}{2}^+, \frac{9}{2}$	7.929
4.97 ± 3		3.1 ± 0.5	$\frac{11}{2}^{+}$	7.937
5.413 ± 5	< 1	0.53 ± 0.08	$\frac{13}{2}^{-}$	8.288 ± 2
$5.438^{\rm e})$	< 1	2.1 ± 0.5 $^{\rm d})$	$\frac{5}{2}^{+}$	8.306 ± 4
$5.519^{\rm e})$	7.5 ± 1.5	0.54 ± 0.2 ^d)	$\frac{7}{2}, \frac{5}{2}^+$	8.370 ± 4
5.784	≈ 1	5.1 ± 1.3 ^d)	$\frac{5}{2}$	8.579 ± 4
5.794		$1.6 \pm 0.35 \ ^{\rm d,f})$	$\frac{3}{2}$	8.587 ± 3
$5.847^{\rm e})$	< 1	$2.5\pm0.4~^{\rm d})$	$\frac{7}{2}^{-}$	8.629 ± 4
6.145	< 1	$0.2 \pm 0.05 \ ^{\rm d})$	$< \frac{9}{2}$	8.864 ± 4
$6.259^{-{ m e}})$	≈ 1	$0.85 \pm 0.2 \ ^{\rm d})$	$\frac{11}{2}^+, (\frac{9}{2}^+)$	8.953 ± 3
6.356	4.2 ± 1	$0.53 \pm 0.26 \ ^{\rm d})$	$\frac{5}{2}, \frac{7}{2}$	9.030 ± 5

Table 19.13 Resonances in $^{15}{\rm N}(\alpha,\,\gamma)^{19}{\rm F}$ ^)
$E_{\alpha} (\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\rm c.m.} \ (\rm keV)$	$\omega\gamma~({ m eV})$	J^{π}	$E_{\rm x} ({\rm MeV} \pm {\rm keV})$
6.442		0.48 ± 0.15 ^{d,g})	$\frac{7}{2}^{+}$	9.098 ± 4
6.445	≈ 1	0.40 ± 0.1 ^d)	$\frac{7}{2}, \frac{9}{2}$	9.101 ± 4
6.526	9.9 ± 1.5	1.4 ± 1 $^{\rm d})$	$\frac{1}{2}, \frac{3}{2}$	9.165 ± 5
6.576	10 ± 1.5	$1.5 {\rm ~d})$	$\frac{3}{2}$	9.204 ± 7
6.656	2 ± 1	0.15 ± 0.04 ^d)	$\frac{11}{2}^+, \frac{9}{2}^+$	9.267 ± 4
6.672	< 1.5	0.38 ± 0.09 ^d)	$\frac{7}{2}, \frac{9}{2}$	9.280 ± 5
$6.723^{ m e})$	3.4 ± 1	3.4 ± 1.7 ^d)	$\frac{1}{2}^{+}$	9.320 ± 4
6.735	pprox 6		$<\frac{5}{2}$	9.329 ± 4
6.963	< 1	0.7 ± 0.2 $^{\rm d})$	$\frac{5}{2}^+, \frac{7}{2}^+$	9.509 ± 4
6.993	6.3 ± 1.5	$0.5^{\rm d})$	$\frac{3}{2} \rightarrow \frac{7}{2}$	9.533 ± 6
7.057	9.6 ± 1.5	5.2 ± 3 $^{\rm d})$	$\frac{7}{2}$	9.584 ± 4
7.131	≈ 8	$\approx 1 \text{ d})$	$\frac{3}{2}, \frac{5}{2}$	9.642 ± 6
7.146	≈ 6	$\approx 2^{\rm d}$)	$\frac{3}{2}, \frac{5}{2}$	9.654 ± 6
7.179	≈ 4	$\approx 1^{\rm d})$	$\frac{1}{2}, \frac{3}{2}$	9.680 ± 6
7.217	< 1	4 ± 0.7 ^d)	$\frac{9}{2}^+, \frac{11}{2}$	9.710 ± 4
7.349	< 1.5	$3.5\pm0.8~^{\rm d,h})$	$\frac{5}{2}^{+}$	9.814 ± 4
$7.375^{ m e})$	< 0.2	0.51 ± 0.1 ^d)	$\frac{11}{2} \rightarrow \frac{15}{2}$	9.834 ± 3
7.422	≈ 1.5	$3.6\pm0.6~{}^{\rm d})$	$\frac{9}{2}^+, \frac{11}{2}^-$	9.872 ± 3
7.491	≈ 1	19.3 ± 3.0 ^d)	$\frac{9}{2}^{+}$	9.926 ± 3
7.696	1.15 ± 0.14	2.37 ± 0.5 ^d)	$\frac{5}{2}, \frac{7}{2}$	10.088 ± 5
7.749	3.2 ± 1	1.3 ± 0.4 ^d)	$\frac{3}{2}, \frac{5}{2}$	10.130 ± 6
8.047	3 ± 1.5	0.9 ± 0.4 $^{\rm d})$	$\frac{7}{2} \rightarrow \frac{11}{2}$	10.365 ± 4
8.105	< 1.5	15.0 ± 3.0 ^d)	$\frac{11}{2}^+, \frac{13}{2}^+$	10.411 ± 3

Table 19.13 (continued) Resonances in ${}^{15}N(\alpha, \gamma){}^{19}F^{a}$

^a) For references see Tables 19.8 in (78AJ03) and 19.9 in (83AJ01). For branching ratios see Table 19.10 here. $\omega \gamma = (\Gamma_{\alpha} \Gamma_{\gamma} / \Gamma) \frac{1}{2} (2J+1).$ ^b) $\Gamma_{\alpha} = 2.1 \pm 0.7 \text{ meV}, \Gamma_{\gamma} = 40.7 \pm 8.1 \text{ meV}.$ ^c) See also Table 19.7 in (72AJ02).

^d) $\omega\gamma$ measured at (55°) by (78SY01) are uncorrected for angular distribution effects.

^e) Value recalculated by reviewer (87AJ02) from $E_{\rm x}$.

^f) $\Gamma_{\alpha}/\Gamma_{\rm p} = 0.026 \pm 0.008.$ ^g) $\Gamma_{\alpha}/\Gamma_{\rm p} = 0.1 \pm 0.04.$ Using $\Gamma = 0.57 \pm 0.03$ keV (Table 19.18), $\Gamma_{\alpha} = 0.052 \pm 0.03$ keV, $\Gamma_{\rm p} =$ 0.52 ± 0.03 keV.

 $^{\rm h})$ $\Gamma_{\alpha}/\Gamma_{\rm p}=0.55\pm0.16.$ $^{\rm i})$ See (82KR05).

j) See also (85DI16).

^k) See (87MA31).

The discussion in (87AJ02) notes that the ¹⁹F levels involved in cascade decay are at $E_x = 3999.6 \pm 1.2$, 4031.9 ± 0.4 , 4377 ± 1 and 4548 ± 2 keV. The $K^{\pi} = \frac{1}{2}^{-}$ band involves ¹⁹F* $(0.110[\frac{1}{2}^{-}], 1.46[\frac{3}{2}^{-}], 1.35[\frac{5}{2}^{-}], 4.00[\frac{7}{2}^{-}], 4.03[\frac{9}{2}^{-}], 7.16[\frac{11}{2}^{-}])$ and possibly ¹⁹F* $(8.29)[\frac{13}{2}^{-}]$ [J^{π} in brackets]. See, however, reaction 11. See (72AJ02) for a discussion of the evidence for other assignments of J^{π} and K^{π} . ¹⁹F* (10.41) is likely to be the second $\frac{13}{2}^{+}$ (2s, 1d)³ state in ¹⁹F. For references see (83AJ01). See also the comment (85DI16) and reply (85MO20) on negative-parity alpha cluster states in ¹⁹F.

10. (a)
$${}^{15}N(\alpha, p){}^{18}O$$
 $Q_m = -3.980$ $E_b = 4.014$
(b) ${}^{15}N(\alpha, \alpha'){}^{15}N$

Resonances observed in the $(\alpha, \alpha' \gamma)$ and $(\alpha, p\gamma)$ reactions and in the elastic scattering are displayed in Table 19.14. See also (850H04).

In work reported since the previous review (87AJ02), nine states in ¹⁹F between $E_x = 8.288$ and 10.411 MeV were studied by (88HE03). Alpha widths were measured. $T = \frac{3}{2}$ levels at $E_x = 7.538$, 7.660 and 9.927 MeV were studied by (89GA06). These results are included in Table 19.14.

In related work, optical potentials for ${}^{15}\text{N} + \alpha$ were extracted for $E_{\alpha} = 0-150$ MeV (93AB02) and alpha particle strength functions were obtained from resonance parameters by (88LE05). See also the tables of thermonuclear reaction rates (85CA41, 88CA1N). Cross sections for α scattering on light nuclei for ion beam analysis are presented in (91LE33).

11. ¹⁵N(⁶Li, d)¹⁹F
$$Q_{\rm m} = 2.539$$

At $E(^{6}\text{Li}) = 22$ MeV angular distributions are reported to $^{19}\text{F}^{*}$ (0.11, 1.35[u], 1.46, 4.0[u], 8.29[u]). Comparisons are made with the results from the $^{16}\text{O}(^{6}\text{Li}, \text{d})^{20}\text{Ne}$ reaction, in an attempt to determine whether $^{19}\text{F}^{*}$ (8.95) is the $\frac{11}{2}^{-}$ member of the $K^{\pi} = \frac{1}{2}^{-}$ band, of which $^{19}\text{F}^{*}$ (8.29) is the $\frac{13}{2}^{-}$ member (84MO08, 85DI16, 85MO20). Configuration mixing appears to be involved in the $\frac{11}{2}^{-}$ states [$^{19}\text{F}^{*}$ (7.17, 8.95, 9.87)] and in the $\frac{7}{2}^{-}$ states [$^{19}\text{F}^{*}$ (4.00, 5.42)] to which they decay (87FO03).

12. ¹⁵N(⁷Li, t)¹⁹F
$$Q_{\rm m} = 1.547$$

This reaction has been studied at $E(^{7}\text{Li}) = 40$ MeV: see Table 19.11 in (83AJ01).

13. ¹⁵N(¹¹B, ⁷Li)¹⁹F
$$Q_{\rm m} = -4.651$$

See (83AJ01).

$E_{\alpha} \; (\mathrm{MeV} \pm \mathrm{keV})^{\mathrm{b}})$	$\Gamma_{\rm lab}~({\rm keV})$	J^{π}	$E_{\rm x} ({\rm MeV} \pm {\rm keV})$
1.878 ± 10	4	$\frac{3}{2}^{+}$	5.496
2.614 ± 10	1.5	$\frac{5}{2}^{+}$	6.077
2.635 ± 10	5	$\frac{5}{2}^{-}$	6.094
2.833 ± 10	10	$\frac{1}{2}^{+}$	6.250
2.883 ± 10	3	$\frac{5}{2}^{+}$	6.289
2.944 ± 10	3	$\frac{7}{2}^{+}$	6.338
3.060 ± 10	360	$\frac{1}{2}^{-}$	6.429 ± 8
3.194 ± 10	5	$\frac{1}{2}^{+}$	6.535
3.229 ± 10	2	$\frac{5}{2}^{+}$	6.563
3.525 ± 10	3	$\frac{3}{2}^{-}$	6.796
3.587 ± 10	1.5	$(\frac{5}{2}, \frac{3}{2})^+$	6.845
3.648 ± 10	35	$\frac{5}{2}^{-}$	6.893
3.705 ± 10	3	$(\frac{9}{2}, \frac{7}{2})^+$	6.938
3.770 ± 10	64	$\frac{1}{2}$	6.989 ± 8
3.930 ± 10	40	$\frac{7}{2}^{+}$	7.116 ± 8
4.127	< 8		7.271
4.23	< 82	$\frac{7}{2}^{+}$	7.35
$4.465^{\ f})$	0.16 ± 0.05	$\frac{5}{2}^+; T = \frac{3}{2}$	7.538
4.49	< 110	$\frac{7}{2}^{+}$	7.56
4.53	< 50	$\frac{5}{2}^{+}$	7.59
$4.619^{\ f})$	0.0028 ± 0.0008	$\frac{3}{2}^+; T = \frac{3}{2}$	7.660
4.710	< 40	$\frac{1}{2}^{-}$	7.731
4.780	< 8		7.787
4.93	< 260		$7.90^{\rm e})$
(5.005)	(< 8)		(7.964)
(5.018)	(<5)		(7.974)
5.116	< 8		8.052
5.203	< 8		8.120
5.232	< 6		8.143
5.25	< 65		8.16
5.284	< 10		8.184
5.415 ^c)	0.90 ± 0.10	$\frac{13}{2}^{-}$	8.288
5.481	< 10	<i>/</i>	8.340
5.847 ^c)	0.066 ± 0.024	$\frac{7}{2}^{(-)}$	8.629
6.259 ^c)	3.57 ± 0.05	$\frac{11}{2}$	8.954
$6.963 {}^{ m c})$	0.46 ± 0.05	$\frac{7}{2}^{+}$	9.509
7.216 ^c)	0.12 ± 0.03	$\frac{11}{2}^{-}$	9.709
7.373 ^c)	< 0.2	$\left(\frac{11}{2} - \frac{15}{2}\right)$	9.833
$7.430^{\rm c}$)	< 0.5	$\frac{11}{2}^{-}$	9.878

Table 19.14 Levels of $^{19}{\rm F}$ from $^{15}{\rm N}(\alpha,\,{\rm p})$ and $^{15}{\rm N}(\alpha,\,\alpha)$ $^{\rm a})$

$E_{\alpha} (\text{MeV} \pm \text{keV})^{\text{b}})$	$\Gamma_{\rm lab} \ ({\rm keV})$	J^{π}	$E_{\rm x} ({\rm MeV} \pm {\rm keV})$
7.491 f)	0.61 ± 0.09	$\frac{9}{2}^+; T = \frac{3}{2}$	9.926
7.695 ^c)	1.15 ± 0.14	$\frac{5}{2}^{-}$	10.087
$7.877^{\rm d})$	< 1	$\frac{1}{2}^{+}$	10.231 ± 4
$7.977^{\rm d})$		$\frac{3}{2}^{+}$	10.308 ± 4
8.104 ^c)	0.31 ± 0.11	$\frac{13}{2}^{+}$	10.410
$8.179^{\rm d})$	13.8 ± 1.5		10.469 ± 4
8.205 ^d)	6.0 ± 1.0		10.488 ± 4
8.220	5.4 ± 1.0	$\frac{3}{2}^{+}$	10.501 ± 4
8.245	18 ± 2		10.521 ± 4
8.277	2.5 ± 1		10.546 ± 4
8.287 ^d)	5.0 ± 1.5	$\frac{3}{2}^{+}$	10.554 ± 4
$8.307 \ ^{\rm d})$	3.7 ± 1		10.560 ± 4

Table 19.14 (continued) Levels of $^{19}{\rm F}$ from $^{15}{\rm N}(\alpha,\,{\rm p})$ and $^{15}{\rm N}(\alpha,\,\alpha)$ $^{\rm a})$

^a) For references see Tables 19.9 in (78AJ03) and 19.10 in (83AJ01). See also footnote (c).

^(c) Besonances below $E_{\alpha} = 5.5$ MeV are observed in (α, α_0) ; resonances above that energy are observed in $(\alpha, p\gamma)$ and $(\alpha, \alpha'\gamma)$, except those labelled (c). ^{c) 15}N (α, α_0) (88HE03). The total width shown is in the c.m. system and assumes

 $\Gamma_{\rm tot} = \Gamma_{\alpha_0}.$

^d) Value recalculated by reviewer (87AJ02) from $E_{\rm x}$.

^e) See, however, reaction 32.

^f) (89GA06). The total width is in the c.m. system and assumes $\Gamma_{tot} = \Gamma_{\alpha_0}$

$E_{\rm c.m.}$ (MeV)	$E_{\rm x}~({\rm MeV}\pm{\rm keV})$	J^{π}	$\Gamma_{\rm c.m.}~(\rm keV)$
1.368	13.068 ± 4	$\frac{1}{2}^{+}$	< 10
1.545	13.245 ± 10	$\frac{1}{2}^{-}$	7
1.570	13.270 ± 10	$\frac{1}{2}^{+}$	4.5
1.832	13.532 ± 10	$\frac{1}{2}^{+}$	22
2.018	13.718 ± 20	$\frac{3}{2}^{-}$	128
2.178	13.878 ± 15	$\frac{1}{2}^{+}$	101
2.447	14.147 ± 20	$\frac{1}{2}^{+}$	21
2.555	14.255 ± 15	$\frac{3}{2}^{+}$	51
2.652	14.352 ± 10	$\frac{1}{2}^{+}$	154
2.759	14.459 ± 25	$\frac{3}{2}^{+}$	179
2.763	14.463 ± 25	$\frac{5}{2}^{+}$	46

Table 19.15 Resonances in ${}^{16}O(t, t)$ ^a)

^a) For references see (78AJ03).

14. ¹⁵N(¹³C, ⁹Be)¹⁹F
$$Q_{\rm m} = -6.634$$

Groups are reported at $E(^{13}C) = 105$ MeV leading to states which are generally unresolved; J^{π} assignments are suggested: see (83AJ01).

15. (a) ${}^{16}O(t, \gamma){}^{19}F$	$Q_{\rm m} = 11.700$	
(b) ${}^{16}O(t, n){}^{18}F$	$Q_{\rm m} = 1.269$	$E_{\rm b} = 11.700$
(c) ${}^{16}O(t, p){}^{18}O$	$Q_{\rm m} = 3.706$	
(d) ${}^{16}O(t, t'){}^{16}O$		
(e) ${}^{16}O(t, \alpha){}^{15}N$	$Q_{\rm m} = 7.686$	

For reaction (a) see (78AJ03). The excitation function for reaction (b) has been measured for $E_{\rm t} = 0.3$ to 3.7 MeV: there is evidence for a maximum at $E_{\rm t} = 2.5$ MeV. For resonances in the yields of p₀, p₁, α_0 , α_{1+2} see (78AJ03). The elastic yield [reaction (d)] shows a large number of resonances; their parameters are displayed in Table 19.15. See also (87AJ02).

More recently, double differential neutron yields for reaction (b) at $E_x = 20$ MeV were reported in (93DR03, 93DR04). An analysis of reaction (d) by a quasi-resonating-group method is described in (87ZH13). A study of the isospin dependence of the A = 3 isospin potential using reaction (d) for $E_x = 33$ MeV is discussed in (87EN06). See also (86HA1H).

16. (a) ${}^{16}O({}^{3}He, p){}^{18}F$	$Q_{\rm m} = 2.032$
(b) ${}^{16}O({}^{3}He, \alpha){}^{15}O$	$Q_{\rm m} = 4.914$

The use of reaction (a) in an 18 F production technique with natural water is described in (91SU17). An ion beam technique for oxygen analysis using reaction (b) is discussed in (92CO08).

17. ¹⁶O(
$$\alpha$$
, p)¹⁹F $Q_{\rm m} = -8.114$

Angular distributions have been measured at $E_{\alpha} = 20.1$ to 40 MeV: see (78AJ03, 83A-J01, 87AJ02). States observed in this reaction are displayed in Table 19.12 of (78AJ03). See also the shell-model study of nuclear form factors in (87LE15). An application of a perturbed angular correlation measurement to the study of high temperature superconducting oxides is described in (90KOZG).

18.
$${}^{16}O({}^{6}Li, {}^{3}He){}^{19}F$$
 $Q_{\rm m} = -4.095$

This reaction (and its mirror reaction ¹⁶O(⁶Li, t)¹⁹Ne [see ¹⁹Ne, reaction 5]) have been studied at $E(^{6}\text{Li}) = 24$ and 46 MeV: see (78AJ03, 83AJ01). Members of the $K^{\pi} = \frac{1}{2}^{+}$ and $\frac{1}{2}^{-}$ rotational bands have been identified: see Table 19.16. Other groups, mainly to unresolved states, have also been observed. A recent measurement to determine the structure of ¹⁹F between $E_{x} = 5.5-7.5$ MeV was reported in (92ROZZ).

19. ¹⁶O(⁷Li,
$$\alpha$$
)¹⁹F $Q_{\rm m} = 9.233$

Many states have been populated in this reaction: see Table 19.14 in (78AJ03) and (84MO28; $E(^{7}\text{Li}) = 20 \text{ MeV}$). Angular distributions in the latter work have been analyzed via Hauser-Feshbach compound nucleus calculations and FRDWBA. The $K^{\pi} = \frac{1}{2}^{+}$ and $\frac{1}{2}^{-}$ states [see Table 19.16] are discussed in (84MO28).

More recently a discussion of the theory of cluster-stripping reactions was presented in (90OS03). Differential cross sections were calculated with the exact finite-range distorted wave Born approximation (91OS04).

20. ¹⁶O(¹⁰B, ⁷Be)¹⁹F
$$Q_{\rm m} = -6.969$$

See reaction 6 in ¹⁹Ne. See also (83AJ01).

21.
$${}^{16}O({}^{11}B, {}^{8}Be){}^{19}F$$
 $Q_{\rm m} = 0.477$

See (78AJ03).

	$E_{\mathbf{x}}$	in 19 F (MeV))	Ι	$E_{\rm x}$ in ¹⁹ Ne (M	eV)
$J^{\pi b}$)	$K^{\pi} = \frac{1}{2}^+$	$K^{\pi} = \frac{1}{2}^{-}$	other	$K^{\pi} = \frac{1}{2}^+$	$K^{\pi} = \frac{1}{2}^{-}$	other
$\frac{1}{2}^{+}$	0			0.0		
$\frac{3}{2}^{+}$	1.56			$1.54^{\rm d})$		
$\frac{5}{2}^{+}$	0.20			0.24		
$\frac{7}{2}^{+}$	5.47			5.42		
$\frac{9}{2}^{+}$	2.78			$2.79^{\rm d})$		
$\frac{11}{2}^{+}$	(6.50) ^c)					
$\frac{13}{2}^{+}$	4.65			4.64		
$\frac{1}{2}^{-}$		0.11			0.28	
$\frac{3}{2}^{-}$		1.46			$1.62^{\rm d})$	
$\frac{5}{2}$ -		1.35			$1.51^{\rm d})$	
$\frac{7}{2}^{-}$		4.00			$4.20^{\text{ f}})$	
$\frac{9}{2}$ -		4.03			$4.14^{\rm f})$	
$\frac{3}{2}^{+}$			3.91			4.03
$\frac{7}{2}^{+}$			4.38			4.38
$\frac{5}{2}(+)$			4.55			$4.55^{\rm d})$
$\frac{3}{2}^{-}, (\frac{1}{2}^{-})$			4.56			4.593 ± 0.006
$\frac{5}{2}^{-}$			4.68			4.71
$\frac{5}{2}(-)$			5.11			$5.09^{\rm e})$
$\frac{5}{2} +$			5.34			
$\frac{7}{2}^{-}$			5.43			

Table 19.16 Levels of $^{19}{\rm F}$ and $^{19}{\rm Ne}$ from $^{16}{\rm O}(^{6}{\rm Li},\,^{3}{\rm He})$ and $^{16}{\rm O}(^{6}{\rm Li},\,t)$ $^{\rm a})$

^a) For references see Table 19.13 in (83AJ01). E_x values shown are nominal. ^b) J^{π} assignments based on similarities in angular distributions, and on known spin of one of the analog states.

^c) Not strongly populated at $E(^{6}\text{Li}) = 24 \text{ MeV}$. ^d) J^{π} assignments based on similarities in σ_{max} in both reactions, and on known spin of analog state. ^{e)} $J^{\pi} = (\frac{5}{2}^{-}; \frac{7}{2}^{-});$ at 4.78 MeV is also reported. ^{f)} See, however, reaction 5 in ¹⁹Ne.

22. (a) ${}^{16}O({}^{12}C, {}^{9}B){}^{19}F$ $Q_m = -15.666$ (b) ${}^{16}O({}^{13}C, {}^{10}B){}^{19}F$ $Q_m = -12.176$

See (83AJ01, 87AJ02).

23. ¹⁷O(d, t)¹⁶O
$$Q_{\rm m} = 2.114$$
 $E_{\rm b} = 13.814$

For early polarization measurements see (83AJ01). More recently differential cross sections and analyzing powers were measured for $E_{\rm d} = 89$ MeV (90SA27). See ¹⁶O, reaction 67 in (93TI07). For other channels see (78AJ03).

24. ¹⁷O(³He, p)¹⁹F
$$Q_{\rm m} = 8.320$$

States studied in this reaction at $E({}^{3}\text{He}) = 18$ MeV are displayed in Table 19.14 of (83AJ01). A study involving states with $E_{x} \leq 7$ MeV was reported by (86SE1C).

25. ¹⁷O(
$$\alpha$$
, d)¹⁹F $Q_{\rm m} = -10.033$

At $E_{\alpha} = 47.5$ MeV angular distributions have been studied for deuterons leading to the $\frac{1}{2}^+$, $\frac{5}{2}^+$, $\frac{3}{2}^+$, $\frac{9}{2}^+$, $\frac{13}{2}^+$ and $\frac{7}{2}^+$ members of the $K = \frac{1}{2}^+$ band [¹⁹F* (0, 0.197, 1.55, 2.78, 4.65, 5.47)], to two $\frac{11}{2}^+$ states ¹⁹F* (6.49, 7.94) [both of which are strongly populated] and to the $\frac{7}{2}^+$ state at 4.38 MeV. The reaction populates strongly only those positive-parity states that are predominantly (sd)³: see (83AJ01).

26.
$${}^{18}O(p, \gamma){}^{19}F$$
 $Q_m = 7.994$

This reaction was studied for $E_{\rm p} = 80$ to 2200 keV by (80WI17). A large number of resonances have been investigated and $E_{\rm res}$, total and partial widths, branching and mixing ratios and $\omega\gamma$ values are reported. Transition strength arguments as well as analyses of γ -ray angular distribution data lead to J^{π} assignments: see Tables 19.10, 19.17, and 19.18 for a display of the results. More recently measurements were made for $E_{\rm p} < 0.22$ MeV by (90VO06), and the results are included in Table 19.18.

Absolute cross sections measured for direct capture lead to C^2S values for a number of states of ¹⁹F. Reduced widths and J^{π} determinations led (80WI17) to postulate ¹⁹F* (3.91, 4.55, 4.38, 6.59, 6.50, 10.43) as the $J^{\pi} = \frac{3}{2}^+, \frac{5}{2}^+, \frac{7}{2}^+, \frac{9}{2}^+, \frac{11}{2}^+, \frac{13}{2}^+$ states of the $K^{\pi} = \frac{3}{2}^+$ rotational band; ¹⁹F* (7.70 or 7.26, 6.09, 9.82, 6.93, 9.87) as the $J^{\pi} = \frac{1}{2}^-, \frac{3}{2}^-,$ $\frac{5}{2}^-, \frac{7}{2}^-$ and $\frac{11}{2}^-$ members of the excited $K^{\pi} = \frac{1}{2}^-$ rotational band; and ¹⁹F* (4.56, 4.68,

$E_{\rm x}~({\rm keV})$	$E_{\rm x}~({\rm keV})$
6088 ± 1	6839 ± 1
6100 ± 2 °)	6930 ± 3
6163 ± 2	6989 ± 3
6255 ± 1	$7262\pm2~^{\rm d})$
6283 ± 3	7364 ± 4 $^{\rm e})$
6493 ± 3	7540 ± 1
6500 ± 1	7661 ± 1
6529 ± 2	
6789 ± 2	
	$E_{x} (keV)$ 6088 ± 1 $6100 \pm 2 ^{c})$ 6163 ± 2 6255 ± 1 6283 ± 3 6493 ± 3 6493 ± 3 6500 ± 1 6529 ± 2 6789 ± 2

Table 19.17 Some bound states of $^{19}{\rm F}$ involved in the capture $\gamma\text{-rays}$ from $^{18}{\rm O}+{\rm p}^{\rm a})$

^a) (80WI17). See also Tables 19.10 and 19.18.

^b)
$$J^{\pi} = \frac{5}{2}^{-}$$
.
^c) $J^{\pi} = \frac{9}{2}^{-}$.
^d) $J^{\pi} = \frac{1}{2}^{-}$, $\frac{3}{2}$.
^e) $J^{\pi} = \frac{1}{2}^{+}$.

5.42, 6.10, 7.17) as the $J^{\pi} = \frac{3}{2}^{-}, \frac{5}{2}^{-}, \frac{7}{2}^{-}, \frac{9}{2}^{-}$ and $\frac{11}{2}^{-}$ members of the $K^{\pi} = \frac{3}{2}^{-}$ rotational band. Evidence suggesting the presence of isospin mixing in the $\frac{5}{2}^{+}$, first $T = \frac{3}{2}$ state in ¹⁹F at 7.54 MeV has been pointed out (80WI17). See also Table 19.9.

Stellar reaction rates have also been calculated: the data cover $T_9 = 0.01-5.0$. The consequences for the final termination of the CNO tri-cycle are discussed by (80WI17). See also (87AJ02). See also the more recent tables of thermonuclear reaction rates in (83HA1B, 85CA41, 88CA1N).

27. ¹⁸O(p, n)¹⁸F
$$Q_{\rm m} = -2.437$$
 $E_{\rm b} = 7.994$

Yield measurements are reported from $E_{\rm p} = 2.5$ to 13.5 MeV [see (78AJ03) for the references]. The observed resonances are displayed in Table 19.19. Measurements of spin observables for this reaction with polarized protons at $E_{\rm p} = 135$ MeV were reported by (89WAZZ). Total cross sections for production of ¹⁸F for $E_{\rm p} < 30$ MeV were measured by (90WA10). A cryogenic ¹⁸O target technique is discussed in (93FI08). See also (86HA1H).

28. ¹⁸O(p, p')¹⁸O
$$E_{\rm b} = 7.994$$

Scattering studies have been carried out for $E_p = 0.6$ to 16.3 MeV and for $E_p = 6.1$ to 16.6 MeV: see (78AJ03, 83AJ01, 87AJ02). Pronounced resonant structure is evident up to

$E_{\rm p}~({\rm keV})$	$\Gamma_{\rm lab}~({\rm keV})$	$\omega\gamma~({ m eV})$	J^{π}	$E_{\rm x} \; ({\rm keV})$
50-120 ^k)		$< (0.02 \pm 0.02) \times 10^{-6}$ k)		< 8.108 ^k)
$150.5 \pm 0.5 \ ^{\rm k})$	<0.5 $^{\rm k})$	$(0.92 \pm 0.06) \times 10^{-3}$ k)	$\frac{1}{2}^{+k}$	$8.1367^{ m e})$
$214.7 \pm 0.5 \ ^{\rm k})$	< 0.8 ^k)	$(5.0 \pm 1.0) \times 10^{-6}$ k)		$8.199^{\rm k})$
274 ± 3	< 1.5	$(3.7 \pm 0.5) \times 10^{-5}$	$< \frac{7}{2}$	8.254
334 ± 2	< 1	$(0.95 \pm 0.08) \times 10^{-3}$	$\frac{5}{2}^{+}$	8.310^{f})
622 ± 2	< 0.5	$(10\pm2)\times10^{-3}$	$\frac{5}{2}^{+}$	8.583
629.6 ± 0.3	2.0 ± 0.3	0.10 ± 0.02	$\frac{3}{2}^{-}$	$8.5904 \ ^{\rm g})$
~ 680	300		$\frac{3}{2}$	8.638
841 ± 2	48 ± 2	1.4 ± 0.2	$\frac{1}{2}^{+ b}$)	$8.791^{\rm h})$
			$\left[T=\frac{3}{2}\right]$	
977 ± 2	10 ± 2	$(1.5 \pm 0.2) \times 10^{-2}$	$\frac{3}{2}$	8.919
1166.5 ± 0.4		0.29 ± 0.03 ^j)	$\frac{1}{2}$ -	9.0988^{i})
1398 ± 2	3.6 ± 0.8	0.08 ± 0.01	$\frac{3}{2}^{+}$	9.318
1630 ± 2 °)	7 ± 2	0.025 ± 0.005	$\frac{5}{2}$ +	9.538
1660 ± 3	27 ± 3	0.041 ± 0.010	$\frac{3}{2}$	9.566
1670 ± 4	70 ± 3	0.06 ± 0.01	$\frac{3}{2}$	9.576
1684 ± 4	8 ± 2	0.025 ± 0.004	$\frac{\overline{7}}{2}$	9.589
1768 ± 1.4	3.8 ± 0.4	1.2 ± 0.2	$\frac{3}{2}^{+}$	9.668
1928.4 ± 0.6 ^d)	0.3 ± 0.05	2.8 ± 0.7	$\frac{5}{2}$	9.820
1986 ± 2	< 1.5	0.13 ± 0.04	$\frac{11}{2}^{-}$	9.875
1996 ± 4	26 ± 2	0.14 ± 0.05	$\frac{1}{2}^{+}$	9.884
2263.0 ± 0.7	5.0 ± 1.0		$\frac{3}{2}^{-}$	10.137
$> 2300^{\rm d})$				

Table 19.18 Resonances in $^{18}{\rm O(p,~\gamma)^{19}F^{-a})}$

^a) Mostly from (80WI17). See Tables 19.15 in (78AJ03) and 19.16 in (83AJ01) for other early references. See also Tables 19.10 and 19.17.

^b) Supported by direct capture into this state with a $\sin^2 \theta$ distribution of the d.c. γ -rays and by interference patterns near the resonance.

^c) Decays partly (see Table 19.10) via a state at 8015 ± 2 keV with $J^{\pi} = \frac{5}{2}^+$.

^d) See Table 19.15 in (78AJ03).

^{a)} See Table 19.15 in (78AJ03). ^{e)} $\Gamma_{\rm p} = 0.17 \text{ eV}, \Gamma_{\alpha} = 220 \text{ eV}, \Gamma_{\gamma} = 1.3 \text{ eV}.$ ^{f)} $\Gamma_{\gamma} = 0.71 \pm 0.17 \text{ eV}, \Gamma_{\rm p} = 0.019 \pm 0.009 \text{ eV}, \Gamma_{\alpha} = 46 \pm 19 \text{ eV}, \Gamma_{\rm total} = 47 \pm 19 \text{ eV}.$ ^{g)} $\Gamma_{\gamma} = 0.85 \pm 0.17 \text{ eV}, \Gamma_{\rm p} = 224 \pm 43 \text{ eV}, \Gamma_{\alpha} = 3410 \pm 1220 \text{ eV}.$ ^{h)} The strength of the transition to ¹⁹F* (7.62) [see Table 19.20] limits J to $\frac{1}{2}$ or $\frac{3}{2}$ for that state. ⁱ⁾ The angular distribution of the γ -ray from this state to ¹⁹F* (5.62) and branching ratio arguments lead to $J = \frac{5}{2}$ for that state.

^j) (82BE29).

k) (90VO06).

$E_{\rm p}~({\rm MeV}\pm{\rm keV})$	$\Gamma_{\rm c.m.}~(\rm keV)$	Res. in yield of $^{\rm b}$)	J^{π}	$E_{\rm x}$ in ¹⁹ F (MeV)
2.643 ± 1.0	6.2 ± 0.5	n	$\left(\frac{3}{2}\right)$	10.497
2.691 ± 1.0	2.5 ± 0.2	n	-	10.542
2.717 ± 1.5	5.2 ± 0.5	n		10.567
2.767 ± 1.5	4.7 ± 0.5	n	$\frac{5}{2}^{(+)}$	10.614
2.923 ± 4	6 ± 3	n	_	10.762
3.025 ± 2.0	24.0 ± 15	n	$\frac{3}{2}$	10.859
(3.08 ± 20)	≈ 60	n	_	(10.91)
3.148 ± 3	14 ± 2	n		10.975
3.164 ± 2.5	7 ± 2	n		10.990
3.250 ± 2.5	35 ± 4	n	$\frac{3}{2}$	11.072
3.370 ± 4	17 ± 4	n	_	11.185
3.463 ± 3	7 ± 2	n		11.273
3.470 ± 15	70 ± 20	n		11.280
3.653 ± 4	40 ± 10	n, n_1		11.453
3.680 ± 5	7 ± 3	n		11.479
3.705 ± 5	4 ± 2	n, n_1		11.502
3.748 ± 15	50 ± 15	n		11.543
3.775 ± 7	15 ± 10	n, n_2	$(T = \frac{3}{2})$	11.569
(3.79 ± 20)	60 ± 20	n	-	(11.58)
3.863 ± 4	45 ± 10	n, n_1		11.652
4.00		n_1, n_3		(11.78)
4.06 ± 10 $^{\rm c)}$	< 50	n, n_1		11.84
4.11		n_1		(11.89)
4.16 ± 10	90	n, n_1		11.93
4.33		n_1, n_3		(12.09)
4.37 ± 10	100	n,n_1,n_2		12.13
4.47	50	n, n_1, n_2, n_3		12.23
$4.58 \pm 10^{\rm d}$)		n_1		(12.33)
4.70		n_3		(12.44)
4.83		n_1, n_2, n_3		(12.57)
4.90		n_2		(12.63)
5.05 ± 10	200	n,n_1,n_2		12.78
5.10		n_1, n_2		(12.82)
5.20		n_2, n_3		(12.92)
5.35		n, n_1, n_2, n_3		13.06
5.47 ± 15	70	n, n_1		13.17
5.622 ± 15	30	n,n_1,n_2	$(T = \frac{3}{2})$	13.317
5.76		n_1, n_3	-	(13.45)
6.061 ± 15	50	n, n_1, n_2	$(T = \frac{3}{2})$	13.73

Table 19.19 Resonances in $^{18}\mathrm{O}(\mathrm{p,\,n})^{18}\mathrm{F}$ $^{\mathrm{a}})$

$E_{\rm p}~({\rm MeV}\pm{\rm keV})$	$\Gamma_{\rm c.m.}~(\rm keV)$	Res. in yield of $^{\rm b}$)	J^{π}	$E_{\rm x}$ in ¹⁹ F (MeV)
6.60 ± 15	350	n		14.24
(6.70 ± 15)		n		(14.34)
7.17 ± 20	300	n		14.78
7.40 ± 20		n		15.00
(7.8)		n		(15.4)
(7.98)		n		(15.55)
8.19 ± 25	150	n		15.75
8.74 ± 25	200	n		16.27
9.30 ± 30		n		16.80

Table 19.19 (continued) Resonances in ${}^{18}O(p, n){}^{18}F^{a}$)

^a) See Table 19.16 in (78AJ03) for the references.

^b) n without subscript refers to total neutron yield.

^c) Errors here and below are estimated from published data of (64BA16) by H.B. Willard,

private communication to Fay Ajzenberg-Selove.

^d) See also (82DI11).

14 MeV. Observed resonances are shown in Table 19.20. For polarization measurements see (82GL08; $E_{\rm p} = 800$ MeV). See also (87AJ02) and (89PLZV).

Coupled-channel analyses of cross section and analyzing power data for $E_{\rm p} = 398-697$ MeV were carried out by (88DE31). A Dirac optical model analysis for $E_{\rm p} = 800$ MeV was reported by (90PH02).

29. ¹⁸O(p, t)¹⁶O
$$Q_{\rm m} = -3.706$$
 $E_{\rm b} = 7.994$

For polarization measurements at $E_{\rm p} = 90$ MeV see (86VO10) and see (78AJ03). See also the tables of astrophysical reaction rates (83HA1B, 85CA41) and a study of the effect of electron screening on low energy fusion cross sections (87AS05).

30. ¹⁸O(p,
$$\alpha$$
)¹⁵N $Q_{\rm m} = 3.980$ $E_{\rm b} = 7.994$

Yield measurements have been studied for $E_{\rm p} = 72$ keV to 14 MeV: see (72AJ02, 83AJ01, 87AJ02): observed resonances are displayed in Table 19.20. Use of the resonance at $E_{\rm p} = 150$ keV for ¹⁸O depth profiling is discussed in (91BA54).

31. ¹⁸O(d, n)¹⁹F
$$Q_{\rm m} = 5.770$$

$E_{\rm p}~({\rm MeV}\pm{\rm keV})$	$\Gamma_{\rm lab}~({\rm keV})$	Particles out	$\Gamma_{\rm p}^{\ \ \rm b})~({\rm keV})$	$\Gamma_{\alpha}^{\ b}$ (keV)	J^{π}	$E_{\rm x}~({\rm MeV})$
0.095 ± 3 °)	≤ 3	$lpha_0$				8.084
0.152 ± 1 ^c)	≤ 0.5	$lpha_0$				8.138
0.216 ± 1 $^{\rm c})$	≤ 1	$lpha_0$				8.199
0.334 ± 1 ^c)	≤ 1	$lpha_0$				8.310
$0.6326 \pm 0.4 \ ^{\rm c})$	2.1 ± 0.1	p_0, α_0	0.065 ± 0.006	2.0 ± 0.2	$\frac{3}{2}^{-}$	8.5933
≈ 0.695 $^{\rm c})$	≈ 340	p_0, α_0	5 d)	$95^{\rm d})$	$\frac{1}{2}^{+}$	8.65
0.846 ± 1.5 ^{c,g})	47 ± 1	p_0, α_0	26 ± 1.5	21 ± 1	$\frac{1}{2}^+; T = \frac{3}{2}$	8.795
0.9870 ± 0.7	3.8 ± 0.2	p_0, α_0	0.080 ± 0.007	3.7 ± 0.3	$\frac{3}{2}^{-}$	8.929
(1.135)	140					(9.069)
1.1685 ± 0.5	0.60 ± 0.03	p_0, α_0	0.005 ± 0.0006	0.595 ± 0.08	$\frac{7}{2}^{+}$	9.1007
1.2390 ± 1	6.1 ± 0.3	$\mathrm{p}_0,(\alpha_0)$	0.40 ± 0.03	5.7 ± 0.4	$\frac{1}{2}^{+}$	9.167
1.4025 ± 1	5.2 ± 0.2	p_0, α_0	0.23 ± 0.02	5.0 ± 0.4	$\frac{1}{2}^{+}$	9.322
1.620 ± 6	30	p_0, α_0			$(\frac{5}{2})$	9.528
1.668 ± 6	27	p_0, α_0			$\frac{3}{2}$	9.574
1.766 ± 3	3.6	p_0, α_0	2.1	1.5	$\frac{3}{2}^{+}$	9.666
1.928 ± 3	0.16	p_0, α_0	0.09	0.07	$(\frac{5}{2}, \frac{7}{2})^{-}$	9.820
2.001 ± 4	31	p_0, α_0	12	19	$\frac{1}{2}^{+}$	9.889
2.2630 ± 0.7	5.0 ± 1.0	$\alpha_0, \alpha_1, \alpha_2$	≈ 5	$0.004 \ ^{\rm c})$	$\frac{3}{2}^{-}$	10.137
2.289 ± 3	33	p_0, α_0	2.3	(1.0)	$\frac{1}{2}^{+}$	10.162
2.363 ± 3	4.5	p_0, α_0	2.8	1.7	$\frac{1}{2}^{+}$	10.232
2.387 ± 3	24	p_0, α_0	11	13	$\frac{3}{2}^{+}$	10.254
2.443 ± 4	9.7	p_0, α_0	5.2	4.5	$\frac{3}{2}^{+}$	10.308
2.644 ± 3	4.6	$p_0, p_1, \alpha_0, \alpha_{1+2}$	2.4	(1.0)	$\frac{3}{2}^{+}$	10.498
2.705 ± 3	8 ± 2	p_1, α_0			$\frac{3}{2}^{(+)}; (T = \frac{3}{2})$	10.556
2.732 ± 4	23 ± 3	p_1, α_0			$(\frac{5}{2}^+)$	10.581
2.768 ± 3	4.0	$p_0, p_1, \alpha_0, \alpha_{1+2}$	0.7	(1.0)	$\frac{5}{2}^+; T = \frac{3}{2}^{a}$	10.615
2.925 ± 3	5.7	$p_0, p_1, \alpha_0, \alpha_{1+2}$	4.5	1.2	$\frac{1}{2}^{-}$	10.764
3.029 ± 4	19.5	$p_0, p_1, \alpha_0, \alpha_{1+2}$	13.0		$\frac{5}{2}^{+}$	10.862
(3.06)		$lpha_0$				(10.89)
3.148 ± 4	(14)	$p_0, p_1, \alpha_0, \alpha_{1+2}$	(4.5)	(4.5)	$(\frac{3}{2}, \frac{5}{2})^+$	10.975
3.266 ± 9	35	$p_0, p_1, \alpha_0, \alpha_{1+2}$			$\frac{1}{2}^{+}$	11.087
3.386 ± 9	20	$p_0, p_1, \alpha_0, \alpha_{1+2}$			$(\frac{1}{2})$	11.200
3.479 ± 8	23 ± 5	$p_0, p_1, \alpha_0, \alpha_{1+2}$	4.3 ± 1		$\frac{5}{2}^{+}$	11.288
3.547 ± 25	286 ± 33	\mathbf{p}_0	241 ± 2		$\frac{1}{2}^{+}$	11.35
3.643 ± 9	40 ± 7	$p_0, (\alpha_{1+2})$	17 ± 3		$\frac{1}{2}^{-}$	11.444
3.694 ± 9	29 ± 6	$p_0, p_1, \alpha_0, (\alpha_{1+2})$	12 ± 2		$\frac{3}{2}$	11.492
3.744 ± 8	23 ± 5	$\mathrm{p}_0,\mathrm{p}_1,\alpha_0$	3.7 ± 1		$\frac{5}{2}^{+}$	11.539
3.811 ± 12	66 ± 7	\mathbf{p}_0	30 ± 12		$\frac{3}{2}^{-}$	11.603
3.869 ± 8	28 ± 7	$p_0, p_1, (\alpha_{1+2})$	12 ± 2		$\frac{3}{2}^+; (T = \frac{3}{2})$	11.658
4.290 ± 30	75 ± 25	$p_0, \alpha_0, \alpha_{1+2}$	10 ± 3		$\frac{1}{2}^{-}$	12.06

Table 19.20 Energy levels of $^{19}{\rm F}$ from $^{18}{\rm O(p,~p)^{18}O}$ and $^{18}{\rm O(p,~\alpha)^{15}N}$ $^{\rm a})$

$E_{\rm p} \ ({\rm MeV} \pm {\rm keV})$	$\Gamma_{\rm lab}~({\rm keV})$	Particles out	$\Gamma_{\rm p}$ ^b) (keV)	$\Gamma_{\alpha}^{\ b}$ (keV)	J^{π}	$E_{\rm x}~({\rm MeV})$
4.390 ± 15	110 ± 15	$p_0, p_1, (\alpha_0, \alpha_{1+2})$	60 ± 10		$\frac{3}{2}^{-}; T = \frac{3}{2}$	12.151
4.465 ± 12 ^c)	78 ± 1	$p_0, p_1, \alpha_0, \alpha_{1+2}$	48 ± 6		$\frac{3}{2}^{+}$	12.222
4.782 ± 7 $^{\rm e})$	16 ± 4	p_0,p_1	2.4 ± 1		$\frac{1}{2}^{-}$	12.522
4.840 ± 10	50 ± 10	p_0, p_1, α_{1+2}	6.4 ± 2		$\frac{5}{2}^{+}$	12.577
4.848 ± 25	300 ± 15	\mathbf{p}_0	80 ± 25		$\frac{1}{2}^{-}; T = \frac{3}{2}$	12.58
5.074 ± 30	100 ± 40	$p_0, p_1, \alpha_{(0)}$	13 ± 5		$\frac{5}{2}^+; T = \frac{3}{2}$	12.80
5.135 ± 30	290 ± 40	p_0,p_1	114 ± 17		$\frac{3}{2}^+; T = \frac{3}{2}$	12.86
5.225 ± 25	75 ± 25	p_0, p_1, α_{1+2}	3 ± 1.5		$\frac{5}{2}^{+}$	12.94
5.27 ± 50	130 ± 40	\mathbf{p}_0	20 ± 8		$\frac{1}{2}^{-}$	12.98
5.38 ± 75	300 ± 75	\mathbf{p}_0	75 ± 25		$\frac{3}{2}^{-}$	13.09
5.622 ± 8 $^{\rm e})$	30 ± 6	$p_0, p_1, \alpha_0, \alpha_{1+2}$	10 ± 3		$\frac{7}{2}^{-}$	13.317
5.670 ± 25	40 ± 20	\mathbf{p}_0	2 ± 2		$\frac{3}{2}^{-}$	13.36
6.060 ± 11	55 ± 10	$p_0, p_1, (\alpha_{1+2})$	13 ± 3		$\frac{7}{2}^{-}; T = \frac{3}{2}$	13.732
$6.390 \pm 20 \ ^{\rm f})$	148 ± 30	\mathbf{p}_0	12 ± 3		$\frac{5}{2}^{+}$	14.04
6.428 ± 30	88 ± 30	\mathbf{p}_0	8 ± 3		$\frac{3}{2}^{-}$	14.08
6.687 ± 20	80 ± 30	\mathbf{p}_0	9 ± 3		$\frac{3}{2}^{-}$	14.33
7.080 ± 20	130 ± 40	\mathbf{p}_0	21 ± 5		$\frac{3}{2}^{-}$	14.70
7.10 ± 70	270 ± 70	$lpha_0$			$\frac{1}{2}^{-}$	14.72
7.125 ± 50	380 ± 70	p_0, α_0	100 ± 25		$\frac{1}{2}^{+}$	14.74
7.167 ± 40	210 ± 50	\mathbf{p}_0	21 ± 6		$\frac{5}{2}^{+}$	14.78
7.337 ± 40	208 ± 30	\mathbf{p}_0	20 ± 4		$\frac{7}{2}^{-}$	14.94
7.775 ± 20	70 ± 10	\mathbf{p}_0	6 ± 2		$\frac{1}{2}^{-}$	15.36
7.820 ± 30	84 ± 25	\mathbf{p}_0	7 ± 2		$\frac{5}{2}^{+}$	15.40
8.282 ± 40	102 ± 25	\mathbf{p}_0	8 ± 3		$\frac{3}{2}^{-}$	15.83
8.670 ± 40	180 ± 30	\mathbf{p}_0	16 ± 4		$\frac{3}{2}^{+}$	16.20
8.695 ± 30	234 ± 40	\mathbf{p}_0	13 ± 4		$\frac{7}{2}^{-}$	16.23
8.747 ± 30	176 ± 30	\mathbf{p}_0	13 ± 4		$\frac{3}{2}^{-}$	16.28
9.563 ± 40	348 ± 70	\mathbf{p}_0	39 ± 8		$\frac{3}{2}^{-}$	17.05
9.679 ± 40	340 ± 70	\mathbf{p}_0	30 ± 8		$\frac{7}{2}^{-}$	17.16
9.986 ± 30	34 ± 20	\mathbf{p}_0	3 ± 2		$\frac{3}{2}^{-}$	17.45
10.200 ± 60	100 ± 60	\mathbf{p}_0	5 ± 3		$\frac{7}{2}^{-}$	17.65
10.496 ± 40	268 ± 60	\mathbf{p}_0	23 ± 5		$\frac{3}{2}^{-}$	17.93
10.596 ± 60	384 ± 60	\mathbf{p}_0	32 ± 7		$\frac{7}{2}^{-}$	18.03
11.698 ± 60	584 ± 150	\mathbf{p}_0	22 ± 7		$\frac{3}{2}^{-}$	19.07
12.499 ± 150	388 ± 60	\mathbf{p}_0	13 ± 6		$\frac{5}{2}^{-}$	19.83
12.547 ± 40	498 ± 60	\mathbf{p}_0	39 ± 8		$\frac{3}{2}^{-}$	19.87
13.542 ± 50	434 ± 60	\mathbf{p}_0	32 ± 5		$\frac{1}{2}^{-}$	20.81
13.662 ± 50	334 ± 50	\mathbf{p}_0	12 ± 4		$\frac{3}{2}^{-}$	20.93
13.791 ± 40	472 ± 30	\mathbf{p}_0	25 ± 5		$\frac{7}{2}^{-}$	21.05

Table 19.20 (continued) Energy levels of $^{19}{\rm F}$ from $^{18}{\rm O}({\rm p,~p})^{18}{\rm O}$ and $^{18}{\rm O}({\rm p,~\alpha})^{15}{\rm N}$ ^)

^a) See also Tables 19.14 in (72AJ02) and 19.17 in (78AJ03) for the earlier work and references.

^b) See also Table 19.18.

^c) (p, α) resonance strengths from (79LO01) are as follows ($E_{\rm p}$ (MeV±keV): Resonance strength (eV)): (0.095±3: (1.6±0.5) × 10⁻⁷), (0.152±1: 0.17±0.02), (0.216±1: (2.3±0.6) × 10⁻³), (0.334±1: 0.057±0.010), (0.629±2: 420±80), (≈ 0.695 : $\approx 1.22 \times 10^5$), (0.846±1.5: 4.1±1.0) × 10^4). ^d Widths not in accord with Γ measured by (70LO01)

^d) Widths not in accord with Γ measured by (79LO01).

^e) See (82DI11). A resonance at $E_{\rm p} = 4.58$ MeV in the p channel is also reported. It is suggested that the states corresponding to $E_{\rm x} = 12.33$, 12.52, and 13.32 MeV have $T = \frac{3}{2}$ and $J^{\pi} = (\frac{3}{2}^{+})$, $\frac{5}{2}^{(+)}$ and $\frac{3}{2}^{-}$, respectively. ^f) The parameters of this resonance and most of the ones below are from a phase-shift analysis by (79MU05) of the elastic scattering for $E_{\rm p} = 6.1$ to 16.6 MeV. Other structures have also been observed but parameters for those have not been obtained. ^g) See also (86CO1E)

^g) See also (86CO1F).

Angular distributions of neutron groups corresponding to ¹⁹F states with $E_x < 8.2$ MeV have been measured at $E_d = 3$ and 4 MeV: see Table 19.18 in (78AJ03) and Table 19.21 here. See also the $E_d = 25$ MeV measurements of (92TEZY).

32. ¹⁸O(³He, d)¹⁹F $Q_{\rm m} = 2.500$

Angular distributions of the deuterons corresponding to many states of ¹⁹F have been analyzed by DWBA: the results are shown in Table 19.21. Spectroscopic factors for population of $J^{\pi} = \frac{1}{2}^+, \frac{5}{2}^+, \frac{3}{2}^+$ levels at $E_x = 0, 0.199, 1.554$ MeV by (³He, d) at $E({}^{3}\text{He} = 25$ MeV have been deduced by (94VE04). The spectroscopic factors obtained for ¹⁹F* (7.54, 8.80), the $T = \frac{3}{2}, J^{\pi} = \frac{5}{2}^+$ and $\frac{1}{2}^+$ analogs of ¹⁹O* (0, 1.47) are in good agreement with those obtained for the ¹⁹O states in the ¹⁸O(d, p)¹⁹O reaction: see (78AJ03). A search for a state at $E_x = 7.90$ MeV [just below the ¹⁸O + p threshold, and of astrophysical interest] has been unsuccessful: $\theta_p^2 < 5 \times 10^{-5}$ (86CH29). See also (87AJ02).

33. ¹⁸O(
$$\alpha$$
, t)¹⁹F $Q_{\rm m} = -11.820$

Cross sections were measured at $E_{\alpha} = 65$ MeV and analyzed with DWBA (92YA08). Spin-parity and isospin assignments were proposed. Spectroscopic factors were obtained and compared with shell-model calculations. See Table 19.22.

34. ¹⁹O(
$$\beta$$
-)¹⁹F $Q_{\rm m} = 4.819$

$E_{\mathbf{x}}^{\mathbf{b}}$)	<i>l</i> ^b)	$C^2 S(2J_{\rm f}+1)^{\rm b})$	$J^{\pi b}$)
0	0	$0.42^{\rm a,f})$	$\frac{1}{2}^+$
0.112 ± 3	1	0.224	$\frac{1}{2}$ -
0.199 ± 3	2	$2.45^{\rm a,f})$	$\frac{5}{2}$ +
1.347 ± 5			
1.460 ± 5	1	0.098	$\frac{3}{2}^{-}$
1.5544 ± 0.6 ^c)	2	$1.01^{-f})$	$\frac{3}{2}^{+}$
2.784 ± 5	4	0.027	$\frac{9}{2}^+$
3.912 ± 5			
3.999 ± 1 ^c)	(3)	(0.019)	$(\frac{7}{2}^{-})$
4.036 ± 10			
$4.3761 \pm 0.8 \ ^{\rm c})$	(4)	(0.048)	$(\frac{7}{2}^+)$
$4.5557 \pm 0.5 \ ^{\rm c})$	2	0.31	$^{\mathrm{a}})$
4.684 ± 1 ^c)			
$5.113 \pm 5^{\text{a}}$)	(2, 3)		$\frac{5}{2}^{-}, \frac{7}{2}^{-}$ a)
5.34 ± 5	(2, 3)	0.0065	$\frac{5}{2}^{+}$
5.428 ± 8	(2, 3)	(0.042)	$(\frac{3}{2}^+)$
5.492 ± 5 ^d)			
5.54 ± 5	3	0.14	$\frac{7}{2}$
5.625 ± 4			
5.943 ± 5	0	0.014	$\frac{1}{2}^{+}$
6.095 ± 5	1	0.12	$\frac{1}{2}^{-}$
6.167 ± 5			
6.255 ± 8	(0)	$0.19^{-a})$	$\frac{1}{2}^+$ a)
6.503 ± 5	2	0.133	$\frac{3}{2}^+$
6.595 ± 10			
6.792 ± 5	1	$0.29^{\ a})$	$\frac{3}{2}^{-}$
6.93 ± 5	(2, 3)		$(\frac{5}{2}^+, \frac{7}{2}^-)$
7.112 ± 8	2	0.087	$\frac{5}{2}^{+}$
7.26 ± 5			
7.364 ± 5	0	0.091	$\frac{1}{2}^{+}$
7.540 ± 3	2	0.665	$\frac{5}{2}^+; T = \frac{3}{2}$
7.665 ± 5	(2)	$0.035^{\ a})$	$\left(\frac{3}{2}^+\right)$
7.702 ± 5	(0, 1)	(0.052)	$(\frac{3}{2}^{-})$
$8.0140 \pm 1.0 \ ^{\rm e})$	2	0.26	$\frac{5}{2}^{+}$
8.086 ± 5	(2, 3)	0.097	$(\frac{5}{2}^+)$
8.135 ± 5	(0, 1)	0.156	$\frac{1}{2}^{+} a$)
8.198 ± 5	(2, 3)	0.035	$(\frac{5}{2}^+)$
8.255 ± 5	(2)	0.035	$(\frac{5}{2}^+)$
8.31 ± 5 $^{\rm e})$	2		$\frac{5}{2}^{+}$

Table 19.21 Energy levels of $^{19}{\rm F}$ from $^{18}{\rm O}({\rm d,\,n})^{19}{\rm F}$ and $^{18}{\rm O}(^{3}{\rm He,\,d})^{19}{\rm F}$ $^{\rm a})$

$E_{\mathbf{x}}^{\mathbf{b}}$)	<i>l</i> ^b)	$C^2 S(2J_{\rm f}+1)^{\rm b})$	$J^{\pi b}$)
8.592 ± 10	(2, 3)		
8.795 ± 15	0	(0.13)	$\frac{1}{2}^+; T = \frac{3}{2}$
9.113 ± 10			
9.18 ± 15			
9.596 ± 10			
9.682 ± 15			
10.275 ± 15			
10.33 ± 15			
10.525 ± 15			

Table 19.21 (continued) Energy levels of ¹⁹F from ¹⁸O(d, n)¹⁹F and ¹⁸O(³He, d)¹⁹F ^a)

^a) See also Table 19.18 in (78AJ03), in which column 3 should refer to footnote ^c). ^b) ¹⁸O(³He, d): $E(^{3}He) = 16$ MeV, except where footnote is shown. ^c) ¹⁸O(d, n γ).

d) Many of the states with $E_{\rm x} \ge 4.5$ MeV are unresolved: compare with Table 19.9.

^{e)} ¹⁸O(³He, d): $E(^{3}He) = 26.4$ MeV (86CH29) (and A.E. Champagne, private communication to Fay Ajzenberg-Selove). $\theta_{\rm p}^{2} = 1.3 \times 10^{-2}$ and 7.4×10^{-4} , respectively for ¹⁹F^{*} (8.01, 8.31).

^f) Spectroscopic factors for population of these levels by (³He, d) at $E(^{3}\text{He}) = 25 \text{ MeV}$ were also determined by (94VE04).

$E_{\rm x}~({\rm MeV})$ ^b)	$J^{\pi b}$)	$\sigma_{\rm INT} \ ({\rm mb})$
0	$\frac{1}{2}^{+}$	0.13
0.20	$\frac{5}{2}^{+}$	4.84
1.55	$\frac{3}{2}^{+}$	1.22
4.00	$\frac{7}{2}^{-}$	0.2
5.34	$\frac{1}{2}^{(+)}$ a)	0.05
5.42	$\frac{7}{2}^{-}$	0.18
5.5	$\frac{3}{2}^{+}$	0.17
5.53	$\frac{5}{2}^{+}$	0.27
5.94	$\frac{1}{2}$ +	0.03
6.16	$\frac{7}{2}$	0.23
6.26	$\frac{1}{2}$ +	0.03
6.28	$\frac{5}{2}^{+}$	0.09
6.5	$\frac{3}{2}^{+}$	0.11
6.93	$\frac{7}{2}$	0.56
7.36	$\frac{1}{2}^{+}$	0.03
7.54	$\frac{5}{2}^+; T = \frac{3}{2}$	0.64
7.66	$\frac{3}{2}^+; T = \frac{3}{2}$	0.09
8.02	$\frac{5}{2}^{+}$	0.13
8.79	$\frac{1}{2}^+; T = \frac{3}{2}$	0.02
13.32	$\frac{7}{2}^{-}; T = \frac{3}{2}^{a}$	0.04
13.73	$\frac{7}{2}^{-}; T = \frac{3}{2}$	0.06

Table 19.22 Energy levels of $^{19}{\rm F}$ from $^{18}{\rm O}(\alpha,\,{\rm t})^{19}{\rm F}$ $^{\rm a})$

_

^a) See Table II of (92YA08) for more complete information including experimental and calculated spectroscopic factors. ^b) Cited from (87AJ02) except where noted.

Decay to $^{19}F^*$ (keV) $^{\rm b}$)	J^{π}	Branch (%) $^{\rm c}$)	$\log ft$
0	$\frac{1}{2}^{+}$	≤ 4	≥ 6.5
110	$\frac{1}{2}^{-}$	$0.055\substack{+0.013\\-0.038}$	$8.34\substack{+0.30 \\ -0.10}$
197.143 ± 0.004	$\frac{5}{2}^{+}$	45.4 ± 1.5	5.384 ± 0.014
1346	$\frac{5}{2}^{-}$	0.017 ± 0.002	8.25 ± 0.05
1459	$\frac{3}{2}^{-}$	< 0.010	> 8.4
1554.038 ± 0.009	$\frac{3}{2}^{+}$	54.4 ± 1.2	4.625 ± 0.010
2779.849 ± 0.034	$\frac{9}{2}^{+}$	< 0.002	> 8.2
3908.17 ± 0.20	$\frac{3}{2}^{+}$	0.0081 ± 0.0005	6.133 ± 0.027
3999	$\frac{7}{2}^{-}$	< 0.001	> 6.9
4033	$\frac{9}{2}^{-}$	< 0.001	> 6.8
4377.700 ± 0.042	$\frac{7}{2}^{+}$	0.0984 ± 0.0030	3.859 ± 0.017
4550	$\frac{5}{2}^{+}$	< 0.001	> 5.1

Table 19.23 Branching in $^{19}{\rm O}(\beta^-)^{19}{\rm F}$ a)

^a) (82OL02). See Table 19.19 in (78AJ03) for the earlier work.

^b) For γ -ray branchings see Table 19.24.

^c) β -branches and log ft's are calculated assuming 0% for the ¹⁹O(β^-)¹⁹F ground-state transition.

The decay is primarily by allowed transitions to ¹⁹F* (0.197, 1.55), $J^{\pi} = \frac{5}{2}^+, \frac{3}{2}^+$. Very weak branches are also observed to ¹⁹F* (0.11, 1.35, 3.91, 4.39), $J^{\pi} = \frac{1}{2}^-, \frac{5}{2}^-, \frac{3}{2}^+, \frac{7}{2}^+$: see Table 19.23. The half-life is 26.96 ± 0.07 sec: see reaction 1 in ¹⁹O. The character of the allowed decay to the $\frac{5}{2}^+$ and $\frac{3}{2}^+$ states and the forbiddenness of the decay to the ground state of ¹⁹F are consistent with $J^{\pi} = \frac{5}{2}^+$ for the ground state of ¹⁹O, and with $(\frac{7}{2}^+)$ for ¹⁹F* (4.39). Gamma-ray branching ratios are displayed in Table 19.24. See also (83AJ01, 85BR29).

35. ¹⁹F
$$(\gamma, n)^{18}$$
F $Q_m = -10.431$

The cross section for (γ, Tn) has been measured for $E_{\gamma} = 10.5$ to 28 MeV: it shows a clear resonance at $E_{\gamma} \approx 12$ MeV and unresolved structures at higher energies: see (78AJ03). More recently, photoneutron angular distributions were measured by (89KU10) for $E_{\gamma} = 15-25$ MeV. E1 absorption strengths were deduced. An atlas of photoneutron cross sections is presented in (88DI02). See also (72AJ02, 87AJ02). A model for describing relative (γ, n) and (γ, p) yields is discussed in (86IS09).

36. (a) ${}^{19}F(\gamma, p){}^{18}O$	$Q_{\rm m} = -7.994$
(b) ${}^{19}F(\gamma, t){}^{16}O$	$Q_{\rm m} = -11.700$

$E_{\gamma} \; (\text{keV})$	$E_{\rm i}~({\rm keV})$	$E_{\rm f}~({\rm keV})$	$I_{\gamma}^{\mathbf{b}})$
109.894 ± 0.005	110	0	2.54 ± 0.10
197.142 ± 0.004	197	0	95.9 ± 2.1
1149	1346	197	0.0005 °)
1236	1346	110	0.017 ± 0.002
1356.843 ± 0.008	1554	197	50.4 ± 1.1
1444.085 ± 0.010	1554	110	2.64 ± 0.06
1553.970 ± 0.008	1554	0	1.39 ± 0.03
1597.780 ± 0.025	4378	2780	$(1.92\pm 0.05)\times 10^{-2}$
2353.98 ± 0.26	3908	1554	$(1.81\pm 0.23)\times 10^{-3}$
2582.517 ± 0.033	2780	197	$(1.89\pm 0.05)\times 10^{-2}$
3710.64 ± 0.20	3908	197	$(1.10\pm 0.15)\times 10^{-3}$
3797.87 ± 0.20	3908	110	$(1.33\pm 0.14)\times 10^{-3}$
3907.74 ± 0.20	3908	0	$(3.84 \pm 0.17) \times 10^{-3}$
4180.063 ± 0.041	4378	197	$(7.92 \pm 0.17) \times 10^{-2}$

Table 19.24 $\gamma\text{-ray intensities in }^{19}\mathrm{O}(\beta^-)^{19}\mathrm{F}^{\mathrm{a}})$

^a) (82OL02).

^b) γ -ray intensities are per 100 parent decays assuming 0% β -branch to the ground state.

^c) Calculated assuming previously measured branching ratios.

(84KE04) have measured absolute differential cross sections for the p_0 and p_1 channels at 7 angles for $E_{\gamma} = 13.4$ to 25.8 MeV. Angle integrated cross sections for (γ, p_0) show pronounced structures at $E_{\gamma} = 15.45$, 16.70, 17.35, and 18.55 MeV as well as a broad bump at ≈ 20.5 MeV. Additional minor structures may exist at $E_{\gamma} = 13.65$, 14.35, 15.85, 17.90, 19.5, 21.3, 22.2, and 23.5 MeV. In the (γ, p_1) reaction broad bumps appear at $\approx (17.0)$ and 21.5 MeV. The E2 cross section [from (γ, p_0) angular distribution coefficients] is estimated to be ≈ 0.37 of the E2 EWSR (84KE04). The (γ, p_{tot}) cross section to 26 MeV has been derived by (85KE03). See also (78AJ03). A model for describing relative (γ, p) and (γ, n) yields is discussed in (86IS09).

In reaction (b) the (γ, t_0) reaction has been studied for $E_{\gamma} = 18$ to 23 MeV: two peaks are observed at $E_{\gamma} = 18.8$ and 20.1 MeV. It is suggested that $J^{\pi} = \frac{1}{2}^{-}$ or $\frac{3}{2}^{-}$, $T = \frac{1}{2}$. The (γ, t_0) process contributes $\approx 1 \%$ to the total GDR strength: see (78AJ03).

37. ${}^{19}F(\gamma, \gamma){}^{19}F$

The energy of the first excited state is 109.894 ± 0.005 keV; its width is $(5.1 \pm 0.7) \times 10^{-7}$ eV. ¹⁹F* (1.46, 3.91, 7.66) are also excited. The scattering cross section is relatively small and structureless for $E_{\gamma} = 14$ to 30 MeV: see (78AJ03).

38. ¹⁹F(μ^-, ν)

The time spectrum of gamma rays following muonic capture reactions on the ¹⁹F muonic atom was measured by (93GO09). The hyperfine transition rates of muonic ¹⁹F atoms were determined from these measurements. The hyperfine dependence of muon capture is related to the weak axial and pseudoscalar coupling in the nuclear medium.

39. ${}^{19}F(e, e'){}^{19}F$

With $E_{\rm e} = 78$ to 340 MeV, most states of ¹⁹F below $E_{\rm x} = 7.7$ MeV have been observed with an energy resolution of 25–50 keV. Longitudinal and transverse form factors have been derived and compared with shell-model calculations. The spectrum of positive-parity longitudinal excitations is dominated at higher momentum transfer by the $\frac{1}{2}^+$, $\frac{3}{2}^+$, $\frac{5}{2}^+$, $\frac{7}{2}^+$ and $\frac{9^+}{2}$ members of the ground state $K^{\pi} = \frac{1}{2}^+$ band. The C2 strength is concentrated at $E_{\rm x}^{-} < 1.5$ MeV with a small secondary concentration for $5.5 < E_{\rm x} < 6.5$ MeV. The C4 strength is spread from 3 to 6 MeV, predominantly in ¹⁹F* (2.78) $[J^{\pi} = \frac{9}{2}^+]$. The spectra of longitudinal excitations of negative parity states are dominated by 19 F* (1.35) $[J^{\pi} = \frac{5}{2}^{-}]$ and ¹⁹F* (5.5) $[\frac{5}{2}^{-} + \frac{7}{2}^{-}]$. In the transverse mode ¹⁹F* (0.11, 6.79) $[J^{\pi} = \frac{1}{2}^{-},$ $\frac{3}{2}^{-}$, respectively] are prominent. Agreement with theory is good for $\frac{5}{2}^{-}$ and $\frac{7}{2}^{-}$ but poorer for $\frac{1}{2}^{-}$ and $\frac{3}{2}^{-}$ states. The parity of ¹⁹F* (5.34) is uncertain while that of ¹⁹F* (6.55) is probably positive. States are reported at 7.587 and 7.753 MeV with $J^{\pi} = \left(\frac{5}{2}\right)$ and $(\frac{7}{2})$, respectively (85BR15). The form factors for ¹⁹F* (0, 0.11, 2.78) have also been studied by (86DO10) for q = 0.4-2.8 fm⁻¹. Cross section measurements for ¹⁹F states with $E_{\rm x} \leq 4.4$ MeV performed with $E_{\rm e} = 500$ MeV and momentum transfer q = 1.4–2.6 fm⁻¹ were reported by (87DO10). Form factors were compared with shell model calculations. For electromagnetic transition rates see Table 19.25. For the earlier work see (78AJ03, 83AJ01, 87AJ02). See also (88BR1D).

40.
$${}^{19}\mathrm{F}(\mathrm{n},\,\gamma){}^{20}\mathrm{F}$$
 $Q_{\mathrm{m}} = 6.601$

Capture gamma rays were measured from broad neutron resonances in ¹⁹F (91IG1A). Strong primary M1 transitions to low-lying ²⁰F states were observed.

41. (a) ${}^{19}F(n, n'){}^{19}F$

(b) ${}^{19}F(n, 2n){}^{18}F$	$Q_{\rm m} = -10.431$
(c) ${}^{19}F(n, p){}^{19}O$	$Q_{\rm m} = -4.037$
(d) ${}^{19}F(n, np){}^{18}O$	$Q_{\rm m} = -7.994$
(e) ${}^{19}F(n, d){}^{18}O$	$Q_{\rm m} = -5.770$
(f) ${}^{19}F(n, \alpha){}^{16}N$	$Q_{\rm m} = -1.523$

$E_{\rm x}$ in ¹⁹ F (MeV)	J^{π}	Multipole	$ M ^{2 ext{ b}})$
0.110	$\frac{1}{2}^{-}$	C1	$(5.5 \pm 0.6) \times 10^{-4}$
0.197	$\frac{5}{2}^{+}$	C2	62.8 ± 0.7
1.46	$\frac{3}{2}^{-}$	C1	$(9\pm2)\times10^{-4}$
1.55	$\frac{3}{2}^{+}$	M1	0.15 ± 0.09
3.91	$\frac{3}{2}^{+}$	M1	0.43 ± 0.25
4.56	$\frac{3}{2}^{-}$	C1	$(2.8 \pm 2.3) \times 10^{-4}$
5.34	$\frac{1}{2}^{+}$	M1	0.34 ± 0.05
	$\frac{1}{2}^{-}$	C1	$(3.8 \pm 0.5) \times 10^{-3}$
5.50	$\frac{3}{2}^{+}$	M1	0.025
6.09	$\frac{3}{2}^{-}$	C1	$(4.7 \pm 1.3) \times 10^{-3}$
6.28	$\frac{5}{2}^{+}$	C2	17 ± 6
6.79	$\frac{3}{2}^{-}$	C1	$(5.0 \pm 1.3) \times 10^{-3}$
		M2	87 ± 42
7.66	$\frac{3}{2}^+; T = \frac{3}{2}$	M1	0.26 ± 0.08

Table 19.25 Electromagnetic transition rates from $^{19}{\rm F(e,~e')}$ $^{\rm a})$

^a) (85BR15). See Table 19.20 in (78AJ03) for the earlier work. P.M. Endt (private communication to Fay Ajzenberg-Selove) adopts $|M|^2 = 8.9 \pm 0.5$ (C3), 6.9 ± 0.5 (C2) and 6.1 ± 2.4 W.u. (M5) for the ground state transitions of ¹⁹F* (1.35, 1.55, 2.78). See (93EN03).

(93EN03). ^b) B(C1) in units of $e^2 \cdot \text{fm}^2$, B(M1) in units of μ_N^2 , B(C2) in units of $e^2 \cdot \text{fm}^4$ and B(M2) in units of $\mu_N^2 \cdot \text{fm}^2$. These are for transitions from the ground state. Angular distributions of neutron groups from elastic and inelastic scattering have been reported at $E_n = 2.6$, 14.1 and 14.2 MeV: see (72AJ02). Neutron activation cross sections for reactions (b, c, d, f) were measured for $E_n = 13.4-14.9$ MeV by (92KA1G). Reaction (e) is included in a review of (n, d) reactions for $E_n = 14-15$ MeV by (93AT04). Nuclear model codes are used to calculate neutron induced reactions on ¹⁹F for $E_n = 2-20$ MeV by (92ZH15). See also (89HO1H).

- 42. (a) ${}^{19}F(p, p'){}^{19}F$
 - (b) ${}^{19}F(p, X)$

Table 19.21 in (78AJ03) displays energy levels of ¹⁹F derived from inelastic proton scattering. Angular distributions of various proton groups have been measured from $E_p =$ 4.3 to 35.2 MeV [see (78AJ03, 83AJ01)] and at $E_p = 2.76$ and 2.97 MeV (86OU01). The ground-state rotational band is characterized by $\beta_2 = 0.44 \pm 0.04$, $\beta_4 = 0.14 \pm 0.04$. The gyromagnetic ratio of ¹⁹F* (0.197) is $g = 1.442 \pm 0.003$ (69BL18), 1.438 ± 0.005 (84AS03). The mixing ratio for the 1.46 $\rightarrow 0.11$ transition $(\frac{3}{2}^- \rightarrow \frac{1}{2}^-; K = \frac{1}{2}^-$ band) $\delta(\text{E2/M1}) = 0.248 \pm 0.020$. The E2 strength is 18.7 ± 1.9 W.u. The 1.46 $\rightarrow 0$ transition is pure E1 ($\delta = 0.01 \pm 0.03$). For references see (83AJ01). See also ²⁰Ne in (87AJ02). A study of Coulomb excitation by protons and antiprotons is discussed in (93PI10). A discussion of the need for (p, p) cross-section data in thin-film analyses by Rutherford backscattering is presented in (93BO40).

Experimental and theoretical studies of nucleon and cluster knockout by $E_{\rm p} = 30-150$ MeV protons are reviewed in (87VD1A). See also (88BA83). The reactions ¹⁹F(p, p' γ) and ¹⁹F(p, $\alpha\gamma$) were used in a study of proton-induced gamma ray emission spectroscopy to determine flourine concentration in materials by (92ZS01).

43. ¹⁹F(p,
$$\alpha \gamma$$
)¹⁶O $Q_{\rm m} = 8.114$

This reaction is discussed in detail under ²⁰Ne in (87AJ02); resonances are displayed in Tables 20.24, 20.25, and 20.27. A recent measurement of the excitation function for $E_{\rm p} = 0.3$ –3.0 MeV is reported in (93DA1L). The absolute yield, angular distribution, and resonance width of photons from the 340.5 keV resonance was measured by (91CR06). Tests of a new standard for flourine determination utilizing this reaction are described in (92ZS01). See also the related work of (94TA1B). An accelerator calibration procedure utilizing ¹⁹F(p, $\alpha\gamma$) is discussed in (93LA1E). See also (94BA1V). A DWBA analysis for energies below the Coulomb barrier is presented in (91HE16).

44. ¹⁹F(d, p)²⁰F
$$Q_{\rm m} = 4.377$$

This reaction is discussed under 20 F in (87AJ02). A recent measurement of the 20 F half life utilizing this reaction was reported in (92WA04).

45. ${}^{19}F(d, d'){}^{19}F$

Angular distributions have been measured for $E_d = 2.0$ to 15 MeV: see (72AJ02, 78AJ03).

46. ${}^{19}F(t, t'){}^{19}F$

Elastic angular distributions have been studied for $E_t = 2$ and 7.2 MeV: see (72AJ02). More recently, differential cross sections were measured at $E_t = 33$ MeV and analyzed with a phenomenological optical model (87EN06).

47. ¹⁹F(t, ³He)¹⁹O
$$Q_{\rm m} = -4.800$$

See reaction 12 of ^{19}O .

48. ${}^{19}F({}^{3}He, {}^{3}He'){}^{19}F$

Elastic angular distributions have been measured for $E({}^{3}\text{He}) = 4.0$ to 29 MeV [see (72AJ02, 78AJ03)] and at 25 MeV (82VE13). $\langle r^{2} \rangle_{\text{matter}}^{1/2} = 2.72 \pm 0.12$ fm (82VE13). A strong-absorption model analysis for $E({}^{3}\text{He}) = 25$ and 41 MeV is presented in (87RA36).

49. ${}^{19}F(\alpha, \alpha'){}^{19}F$

Elastic angular distributions have been studied at $E_{\alpha} = 19.9$ to 23.3 MeV and at 38 MeV: see (72AJ02) and more recently at 50 MeV (91FR02). Many inelastic groups have also been studied: see Table 19.22 in (78AJ03). Differential cross sections for ¹⁹F levels at $E_{\rm x} = 0.20$, 1.55, and 2.78 MeV were measured at $E_{\alpha} = 50$ MeV by (91FR02) and analyzed in a coupled-channels approach. See also (88LE05) in which the alpha-particle strength function distribution for targets with $12 \leq A \leq 40$ is discussed.

The energy of the γ -ray from the 1.35 \rightarrow 0.11 transition is 1235.8 \pm 0.2 keV; E_x is then 1345.7 \pm 0.2 keV. $|g| = 0.269 \pm 0.043$ (83BI03). See also Table 19.10. For τ_m see Table 19.11. ¹⁹F* (4.65) decays to the $\frac{9}{2}^+$ state ¹⁹F* (2.78): the angular distribution of the cascade γ -rays and τ_m for ¹⁹F* (4.65) indicate $J^{\pi} = \frac{13}{2}^+$. See also (83AJ01, 87AJ02).

50. (a) ${}^{19}F({}^{6}Li, {}^{6}Li'){}^{19}F$ (b) ${}^{19}F({}^{7}Li, {}^{7}Li'){}^{19}F$ See (78AJ03).

51. (a)
$${}^{19}F({}^{12}C, {}^{12}C'){}^{19}F$$

(b) ${}^{19}F({}^{12}C, {}^{12}C'){}^{19}F^* \to \alpha + {}^{15}N \qquad Q_m = -4.014$

Angular distributions (reaction (a)) have been studied at $E(^{12}C) = 40.6$ MeV [see (83AJ01)] and at 30.0 to 60.1 MeV [as well as at $E(^{19}F) = 63.8$ MeV] (84TA08, 86TAZO; to $^{19}F^*$ (0, 0.197, 1.55, 2.78)) and at $E(^{19}F) = 46.5$ to 57.1 MeV (84MA32; to $^{19}F^*$ (0, 0.197)) [see (84MA32, 86VO12) for yield measurements] and at $E(^{12}C = 30, 40, 50, 60$ MeV (88TA12) to $^{19}F^*$ (0.197, 1.554, 2.780 MeV). Measurements of evaporation residues at $E(^{19}F) = 32-72$ MeV were reported in (90AN14). See also (90XE01).

Angular correlations involving the α -decay to ${}^{15}N_{g.s.}$ of twenty ${}^{19}F$ states have been measured at $E({}^{19}F) = 78.5$, 82 and 144 MeV and analyzed with DWBA and strong absorption model calculations. Two new states with $J^{\pi} = \frac{5}{2}^{-}$ or $\frac{7}{2}^{-}$ are reported at 7.740 and 8.277 MeV [estimated ± 0.04 MeV]. It is suggested that ${}^{19}F^*$ (7.26, 9.287) are $\frac{3}{2}^+$ and $(\frac{7}{2}, \frac{9}{2})^+$, respectively (85SM04, 87AJ02). See also (83AJ01), and see the more recent application of molecular orbital theory to heavy ion scattering in (88DI08).

52. (a) ${}^{19}F({}^{14}N, {}^{14}N'){}^{19}F$ (b) ${}^{19}F({}^{15}N, {}^{15}N'){}^{19}F$

Elastic scattering angular distributions have been studied at $E(^{14}N) = 19.5$ MeV and at $E(^{15}N) = 23$, 26, and 29 MeV: see (83AJ01). See also the analysis of (89HO1H).

53. (a) ${}^{19}F({}^{16}O, {}^{16}O'){}^{19}F$ (b) ${}^{19}F({}^{18}O, {}^{18}O'){}^{19}F$

Elastic angular distributions have been studied at $E(^{16}\text{O}) = 21.4$ and 25.8 MeV and at $E(^{19}\text{F}) = 27$, 30, 33, and 36 MeV (reaction (a)) [also to $^{19}\text{F}^*$ (1.46) at the two higher energies], and $E(^{16}\text{O}) = 60$ and 80 MeV (86FUZV; also to $^{19}\text{F}^*$ (0.20, 1.55, 2.78)). See also the measurements of evaporation residue at $E(^{19}\text{F}) = 32-72$ MeV reported in (89AN1D, 90AN14). For reaction (b) at $E(^{18}\text{O}) = 27$, 30, 33 MeV, see (78AJ03) and at $E(^{18}\text{O}) = 10-$ 16 MeV, see (90XE01). See also (87AJ02).

54. ${}^{19}F({}^{23}Na, {}^{23}Na'){}^{19}F$

See (83AJ01, 87AJ02).

55. ${}^{19}F({}^{24}Mg, {}^{24}Mg'){}^{19}F$

See (83AJ01, 87AJ02). A dynamical model analysis of deep inelastic interaction is reported in (89BR14).

56. (a) ${}^{19}F({}^{27}Al, {}^{27}Al'){}^{19}F$ (b) ${}^{19}F({}^{28}Si, {}^{28}Si'){}^{19}F$ (c) ${}^{19}F({}^{30}Si, {}^{30}Si'){}^{19}F$

See (83AJ01, 87AJ02). Evaporation residues were measured for reaction (a) with $E_{\rm lab}(^{19}{\rm F}) = 32-72$ MeV and are reported in (89AN1D, 90AN14). See also (89N11D).

57. ${}^{19}F({}^{40}Ca, {}^{40}Ca'){}^{19}F$

For fusion cross sections see (85RO01). See also (87AJ02). Measurements of evaporation residue for $E_{\rm lab}(^{19}{\rm F}) = 32-72$ MeV are reported in (89AN1D, 90AN14). A parametrization of measured fusion-evaporation residue excitation functions is described in (88DO07). See also the comment (89FR05) on this work and the reply (89DO03). See also (90SC18).

58. ¹⁹Ne(
$$\beta^+$$
)¹⁹F $Q_{\rm m} = 3.238$

See reaction 1 of ¹⁹Ne.

59. ²⁰Ne(d, ³He)¹⁹F $Q_{\rm m} = -7.350$

See (78AJ03).

60. ²⁰Ne(t, α)¹⁹F $Q_{\rm m} = 6.970$

See Table 19.23 in (78AJ03).

61. ²¹Ne(p, ³He)¹⁹F $Q_{\rm m} = -11.887$

³He groups are observed at $E_{\rm p} = 45$ MeV leading to some $T = \frac{1}{2}$ states in ¹⁹F and to ¹⁹F* (7.66), the $\frac{3}{2}^+$; $T = \frac{3}{2}$ analog of ¹⁹O* (0.095): see reaction 15 in ¹⁹Ne and (78AJ03).

62. ²²Ne(p, α)¹⁹F $Q_{\rm m} = -1.673$

The parity violating asymmetry of the 110 keV γ -rays emitted by polarized ¹⁹F* nuclei is $A_{\gamma} = -(6.8 \pm 2.1) \times 10^{-5}$ (82EL08, 87EL03). See also (78AJ03).

63. ²²Na(n,
$$\alpha$$
)¹⁹F $Q_{\rm m} = 1.951$

Cross sections have been measured at thermal energies and reported in (88KO25, 89KO16). See also (88CA1N).

64. ²³Na(n, n
$$\alpha$$
)¹⁹F $Q_{\rm m} = -10.468$

An evaporation-model calculation of the cross section for this reaction at $E_n = 12.6-19.9$ MeV was reported in (91ZH19). See also (78AJ03).

65. ²³Na(d, ⁶Li)¹⁹F
$$Q_{\rm m} = -8.993$$

See (84NE1A).

¹⁹Ne (Figs. 19.3 and 19.4)

GENERAL: See Table 19.26.

1. ${}^{19}\text{Ne}(\beta^+){}^{19}\text{F}$ $Q_{\rm m} = 3.238$

Tab	le 1	9.26
¹⁹ Ne -	- G	eneral

Nuclear Properties

Reviews:

89RA17	Compilation of exp. data on nuclear moments for ground & excited states of nucl.
93EN03	Strengths of gamma-ray transitions in $A = 5-44$ nuclei
Other artic	eles:
87BR30	Empirically optimum M1 operator for sd-shell nuclei
89RA1G	Spin-isospin response in nuclei & nuclear structure implications
90SK04	A = 18 nuclei, effective interaction in the sd shell (also calc. $A = 19$ energy spectra)
91SAZX	Meas. β asymmetry of first forbidden branch of ¹⁹ Ne decay; parity violation (A)
92AV03	The proton neutron interaction and masses of nuclei with $Z > N$
	Astrophysics

Reviews:

93HA1D	Core-collapse supernovae &	z other topics that	combine nuclear, particle	e and astrophysics
	e e e e e e e e e e e e e e e e e e e	• • • • • • • • • • • • • • • • • • •		· ····· ···· ···· · ···· / ····

93SO13 Methods for producing unstable nuclei; also review of major explosive stellar processes Other articles:

87BU12	Proposal for	ISOL	post-accelerator	facility for	r nuclear	• astrophysics a	at TRIUMF
--------	--------------	------	------------------	--------------	-----------	------------------	-----------

87RA1D Nuclear processes & accelerated particles in solar flares

88CA1N Analytic expressions for thermonuclear reaction rates involving $Z \leq 14$ nuclei

88WO1C Supernova neutrinos, neutral currents & the origin of fluorine

90TH1C Explosive nucleosynthesis in SN 1987A: composition, radioactivities, neutron star mass

- 91RY1A Detecting solar boron neutrinos with Cerenkov and scintillation detectors
- Beta-delayed proton decay of ²⁰Mg and its astrophysical implications 92GO10

Nature of the ²⁰Na 2646-keV level and the stellar reaction rate for ¹⁹Ne(p, γ)²⁰Na 93BR12

93UTZZ 19 Ne and breakout from the hot CNO cycle (A)

Other Topics

Reviews:

89MO1J	Theoretical ideas beyond the standard model of weak, electromag. & strong interactions
89TA1O	On the possible use of secondary radioactive beams
Other articl	les:
87 BU07	Projectile-like fragments from 20 Ne + 197 Au – counting simultaneously emitted neutrons
89AR1J	Production & acceleration of radioactive ion beams at Louvain-la-Neuve
89BA2N	Evaluation of hypernucleus production cross-sections in relativistic heavy-ion collisions
89MC1C	Nuclear tests of fundamental interactions
89SA1H	Second class currents & neutrino mass in mirror transitions
90FO04	One-nucleon-transfer reactions induced by 20 Ne at 500 and 600 MeV
91NA05	Left-right symmetry breaking sensitivity of β -asymmetry measurements
92CA12	Possible indication for existence of right-handed weak currents in nuclear beta decay
92HE12	First forbidden β -decays as a probe of T-odd nuclear forces
93CA1K	Tests of time-reversal invariance in nuclear beta decay of polarized 19 Ne (A)
93EV01	Diffraction model analysis of the high-energy spectra of particles in transfer reactions
93SE1B	Weak vector coupling from neutron β -decay & indications for right-handed currents

(A) denotes that only an abstract is available for this reference.

$E_{\rm x} \ ({\rm MeV} \pm {\rm keV})$	$J^{\pi}; T$	K^{π}	$\tau_{\rm m}$ or $\Gamma_{\rm c.m.}$	Decay	Reactions
0	$\frac{1}{2}^+; \frac{1}{2}$	$\frac{1}{2}^{+}$	$[\tau_{1/2} = 17.22 \pm 0.02 \text{ s}]$	β^+	$1, 3, 4, 5, 7, 9, 10, \\11, 13, 14$
0.23827 ± 0.11	$\frac{5}{2}^{+}$	$\frac{1}{2}^+$	$\tau_{\rm m} = 26.0 \pm 0.8 \text{ ns}$ $[g = -0.296 \pm 0.003]$	γ	$\begin{array}{c} 4,5,7,10,11,13,\\ 14 \end{array}$
0.27509 ± 0.13	$\frac{1}{2}^{-}$	$\frac{1}{2}^{-}$	$\tau_{\rm m}=61.4\pm3.0~\rm ps$	γ	4, 5, 7, 10, 13
1.50756 ± 0.3	$\frac{5}{2}^{-}$	$\frac{1}{2}^{-}$	$\tau_{\rm m} = 1.4^{+0.5}_{-0.6} \ {\rm ps}$	γ	4, 5, 7, 10, 13
1.5360 ± 0.4	$\frac{3}{2}^{+}$	$\frac{1}{2}^{+}$	$\tau_{\rm m} = 28 \pm 11 \ {\rm fs}$	γ	4, 5, 7, 10, 11, 13
1.6156 ± 0.5	$\frac{3}{2}^{-}$	$\frac{1}{2}^{-}$	$\tau_{\rm m} = 143 \pm 31~{\rm fs}$	γ	4, 5, 7, 10, 13
2.7947 ± 0.6	$\frac{9}{2}^{+}$	$\frac{1}{2}^{+}$	$\tau_{\rm m} = 140 \pm 35~{\rm fs}$	γ	$\begin{array}{c} 4,5,6,7,9,10,11,\\ 13,14 \end{array}$
4.0329 ± 2.4	$\frac{3}{2}^{+}$		$\tau_{\rm m} < 50~{\rm fs}$	α, γ	2, 5, 8, 13, 14
4.140 ± 4	$(\frac{9}{2})^{-}$	$(\frac{1}{2}^{-})$	$\tau_{\rm m} < 0.3~{\rm ps}$	γ	5, 8, 13
4.1971 ± 2.4	$(\frac{7}{2})^{-}$	$(\frac{1}{2}^{-})$	$\tau_{\rm m} < 0.35~{\rm ps}$	γ	4, 5, 8, 13
4.3791 ± 2.2	$\frac{7}{2}^{+}$	$(\frac{1}{2}^+)$	$\tau_{\rm m} < 0.12~\rm ps$	$lpha,\gamma$	2, 5, 8, 13
4.549 ± 4	$(\frac{1}{2}, \frac{3}{2})^{-}$	÷	$\tau_{\rm m} < 80~{\rm fs}$	α, γ	2, 5, 8, 13
4.600 ± 4	$(\frac{5}{2}^{+})$		$\tau_{\rm m} < 0.16~\rm ps$	γ	2, 5, 8
4.635 ± 4	$\frac{13}{2}^{+}$	$\frac{1}{2}^{+}$	$\tau_{\rm m} > 1 \ {\rm ps}$	γ	4, 5, 6, 7, 8, 9, 13
4.712 ± 10	$(\frac{5}{2}^{-})$	_		α	2, 5
4.783 ± 20	-				13
5.092 ± 6	$\frac{5}{2}^{+}$			α, γ	2, 5, 8, 13, 14
5.351 ± 10	$\frac{1}{2}^{+}$				13
5.424 ± 7	$(\frac{7}{2}^+)$	$(\frac{1}{2}^+)$			4, 5, 13
5.463 ± 20					13
5.539 ± 9					13
5.832 ± 9	.0.1				13
6.013 ± 7	$(\frac{3}{2}, \frac{1}{2})^{-}$				13
6.092 ± 8					5, 13
6.149 ± 20					14
6.288 ± 7					5, 13
6.437 ± 9	() 1.				13
6.742 ± 7	$(\frac{3}{2}, \frac{1}{2})^{-}$				13
6.861 ± 7					5, 13
7.067 ± 9					13
7.21 ± 20					5, 13
7.253 ± 10					13
(7.326 ± 15)					13
(7.531 ± 15)	3+ 3				13
7.616 ± 16	$\frac{3}{2}$; $\frac{3}{2}$				4, 13, 14

Table 19.27 Energy levels of 19 Ne ^a)

$E_{\rm x} ({\rm MeV \pm keV})$	$J^{\pi}; T$	K^{π}	$\tau_{\rm m}$ or $\Gamma_{\rm c.m.}$	Decay	Reactions
7.700 ± 10					13
(7.788 ± 10)					13
7.994 ± 15					13
8.069 ± 12					5, 13
8.236 ± 10					13
8.442 ± 9					4, 5, 13
8.523 ± 10					13
(8.810 ± 25)					13
8.920 ± 9	$(\frac{11}{2}^{-})$				4,5,6,7,13
9.013 ± 10					13
9.100 ± 20					13
9.240 ± 20					4, 13
9.489 ± 25					13
9.81 ± 20	$(\frac{11}{2}^+)$				4,5,6,7,8,13
10.01 ± 20					5
10.407 ± 30	$\frac{3}{2}^{+}$		$\Gamma = 45 \text{ keV}$	p, ³ He, α	3, 4, 7, 13
10.46	$\frac{1}{2}^{+}$		$\Gamma = 355 \text{ keV}$	p, ³ He, α	3
10.613 ± 20	-				13
11.08 ± 20					4, 5, 6
11.24 ± 20					5
11.40 ± 20					5
11.51 ± 50	$\frac{3}{2}^{-}, (\frac{1}{2}^{-})$		$\Gamma = 25 \text{ keV}$	$^{3}\mathrm{He},\alpha$	4
12.23 ± 50	$\frac{5}{2}^{+}$		$\Gamma = 200 \pm 25 \ \mathrm{keV}$	$^{3}\mathrm{He},\alpha$	4, 6, 7
12.40 ± 50	$\frac{7}{2}^{+}$		$\Gamma = 180 \pm 25 \ \mathrm{keV}$	$^{3}\mathrm{He},\alpha$	3
12.56 ± 20	_				5
12.69 ± 50	$\frac{1}{2}^{+}$		$\Gamma = 180 \pm 40 \ \mathrm{keV}$	p, ${}^{3}\text{He}$	3
13.1 ± 30					5
13.22 ± 30					5
13.8 ± 250			$\Gamma = 670 \pm 250 \ \mathrm{keV}$	γ , ³ He	3
14.18 ± 30					5, 6
14.44 ± 30					5
14.78 ± 30			$\Gamma = 620 \pm 130 \ \mathrm{keV}$	γ , ³ He	3, 5
16.23 ± 130			$\Gamma = 400 \pm 130 \ \mathrm{keV}$	$\gamma,$ n, $^3{\rm He}$	3
18.4 ± 500			$\Gamma = 4400 \pm 500 \text{ keV}$	γ , ³ He	3

Table 19.27 (continued) Energy levels of $^{19}\mathrm{Ne}$ $^{\mathrm{a}})$

^a) See also Table 19.28.

$E_{\rm i} \ ({\rm MeV})^{\rm b})$	$J_{ m i}^{\pi}$	$E_{\rm f}~({\rm MeV})$	J_{f}^{π}	Branch (%)	$ au_{ m m}$
0.24	$\frac{5}{2}^{+}$	0	$\frac{1}{2}^{+}$	100	$26.0\pm0.8~\mathrm{ns}$
0.28	$\frac{1}{2}^{-}$	0	$\frac{1}{2}^{+}$	(100) ^c $)$	$61.4\pm3.0~\mathrm{ps}$
1.51	$\frac{5}{2}^{-}$	0.24	$\frac{5}{2}^{+}$	12 ± 3	
		0.28	$\frac{1}{2}^{-}$	$88\pm3~{\rm d})$	$1.4^{+0.5}_{-0.6} \text{ ps}$
1.54	$\frac{3}{2}^{+}$	0.24	$\frac{5}{2}^{+}$	95 ± 3 $^{\rm d})$	$28\pm11~{\rm fs}$
		0.28	$\frac{1}{2}^{-}$	5 ± 3	
1.62	$\frac{3}{2}^{-}$	0	$\frac{1}{2}^{+}$	20 ± 3 $^{\rm d})$	
		0.24	$\frac{5}{2}^{+}$	10 ± 3	
		0.28	$\frac{1}{2}^{-}$	70 ± 4	143 ± 31 fs
2.79	$\frac{9}{2}^{+}$	0.24	$\frac{5}{2}^{+}$	100 ^d)	140 ± 35 fs
4.03	$\frac{3}{2}^{+}$	0	$\frac{1}{2}^{+}$	80 ± 15	$< 50 {\rm ~fs}$
		0.28	$\frac{1}{2}^{-}$	5 ± 5	
		1.54	$\frac{3}{2}^{+}$	15 ± 5	
4.14	$(\frac{9}{2})^{-}$	1.51	$\frac{5}{2}$ -	100	$< 0.3 \ \mathrm{ps}$
4.20	$(\frac{7}{2})^{-}$	0.24	$\frac{5}{2}^{+}$	20 ± 5	
		1.51	$\frac{5}{2}^{-}$	80 ± 5	$< 0.35 \ \mathrm{ps}$
4.38	$\frac{7}{2}^{+}$	0.24	$\frac{5}{2}^{+}$	85 ± 4	$< 0.12~\mathrm{ps}$
		2.79	$\frac{9}{2}^{+}$	15 ± 4	
4.55	$(\frac{1}{2}, \frac{3}{2})^{-}$	0	$\frac{1}{2}^{+}$	35 ± 25	
		0.28	$\frac{1}{2}^{-}$	65 ± 25	$< 80 {\rm ~fs}$
4.60	$(\frac{5}{2}^+)$	0.24	$\frac{5}{2}^{+}$	90 ± 5	$< 0.16~\mathrm{ps}$
		1.54	$\frac{3}{2}^{+}$	10 ± 5	
4.64	$\frac{13}{2}^{+}$	2.79	$\frac{9}{2}^{+}$	100	> 1 ps

Table 19.28 Radiative decay of $^{19}\mathrm{Ne}$ levels $^\mathrm{a})$

^{a)} See Table 19.26 in (78AJ03) for additional data and for references. ^{b)} $E_x = 238.27 \pm 0.11, 275.09 \pm 0.13, 1507.56 \pm 0.3, 1536.0 \pm 0.4, 1615.06 \pm 0.5, and 2794.7 \pm 0.6$ keV from E_{γ} measurements: see Table 19.25 in (78AJ03). ^{c)} $B(\text{E1}) = (1.06 \pm 0.05) \times 10^{-3}$ W.u. ^d) $\Gamma_{\gamma} = 0.17 \pm 0.08, 24^{+27}_{-8}, 3.7^{+1.8}_{-0.9}$ and $2.0^{+1.3}_{-0.6}$ meV: see Table 19.26 in (78AJ03).

Decay to ${}^{19}\mathrm{F}^*$	J^{π}	Branch	$\log ft^{\rm b})$
(MeV)		(%)	
0	$\frac{1}{2}^{+}$	99.99	3.237 ± 0.002
0.11	$\frac{1}{2}^{-}$	$(1.2 \pm 0.2) \times 10^{-2}$	7.061 ± 0.072
$1.55^{\rm c})$	$\frac{3}{2}^{+}$	$(2.22 \pm 0.21) \times 10^{-3} \text{ d})$	5.700 ± 0.041

Table 19.29 Branchings in $^{19}\mathrm{Ne}(\beta^+)^{19}\mathrm{F}$ a)

^a) (83AD03). See also (81AD05).

^b) See also (85BR29).

^c) E_{γ} for ¹⁹F* (1.55 \rightarrow 0.20) = 1356.92±0.15 keV (76AL07), 1356.84±0.13 keV (83AD03).

^d) From (76AL07, 83AD03).

We adopt the half-life of ¹⁹Ne suggested by (83AD03): 17.34 ± 0.09 sec. See also (78AJ03). The decay is principally to ¹⁹F_{g.s.}: see Table 19.29. The ¹⁹Ne decay to ¹⁹F* (0.11) $[J^{\pi} = \frac{1}{2}^{+} \rightarrow \frac{1}{2}^{-}]$ proceeds by vector and axial vector weak currents, with the former making a negligible contribution. The measured decay rates are roughly an order of magnitude smaller than predicted using the $0\hbar\omega + 1\hbar\omega$ shell model (81AD05, 83AD03). Decay of polarized ¹⁹Ne is consistent with time-reversal invariance: see (87AJ02, 88SE11, 93CA1K). See also (88BR1D, 88SA12, 89SA55, 91NA05, 91SAZX, 92HE12, 92SE08, 93SE1B).

2.
$${}^{15}\text{O}(\alpha, \gamma){}^{19}\text{Ne}$$
 $Q_{\rm m} = 3.529$

(86LA07) have recalculated the ¹⁵O(α, γ) direct capture rate at stellar energies. (90MA05) have measured the branching ratios $\Gamma_{\alpha}/\Gamma_{\text{total}}$ for $E_{\text{cm}} = 850, 1020, 1071, 1183$ and 1563 keV resonances in ¹⁵O + α . The strengths of these resonances were determined (see Table 19.30) and the reaction rate for temperatures between 7×10^8 and 3×10^9 K was determined to differ from theoretical calculations (86LA07, 88CA1N) by no more than 20%. See also (88BU01, 88TR1C). A recent measurement by (95MA1A) determined Γ_{α} for $E_{\rm x} = 4.033$ keV and hence the resonant rate for ¹⁵O(α, γ) at astrophysical energies

3.	(a) ${}^{16}O({}^{3}He, \gamma){}^{19}Ne$	$Q_{\rm m} = 8.443$	
	(b) ${}^{16}O({}^{3}He, n){}^{18}Ne$	$Q_{\rm m}=-3.196$	$E_{\rm b} = 8.443$
	(c) ${}^{16}O({}^{3}He, p){}^{18}F$	$Q_{\rm m} = 2.032$	
	(d) ${}^{16}O({}^{3}He, d){}^{17}F$	$Q_{\rm m} = -4.894$	
	(e) ${}^{16}O({}^{3}He, {}^{3}He'){}^{16}O$		
	(f) ${}^{16}O({}^{3}He, \alpha){}^{15}O$	$Q_{\rm m} = 4.914$	
	(g) ${}^{16}O({}^{3}He, {}^{7}Be){}^{12}C$	$Q_{\rm m} = -5.576$	

$E^{*}(^{19}\text{Ne})$	$E_{\alpha}(\mathrm{cm})^{\mathrm{b}})$	$\Gamma_{\gamma}^{\ c}$)	Γ_{lpha}	$\omega\gamma$
(keV)	(keV)	(meV)	(meV)	(meV)
4033	504	73 ± 41 $^{\rm h})$	$0.0072^{\rm d})$	0.014
4379	850	> 60		> 10
4549	1020	39^{+34}_{-15}	< 3.8 $^{\rm e})$	4.5 ± 2.5
4600	1071	> 13	$88 \pm 18^{\text{e}})$	198 ± 51
4712	1183	43 ± 8	$420 \pm 70^{\ f})$	113 ± 17
5092	1563	$\Gamma_{\rm T}(^{19}{\rm F}) > 22$	$\gamma(^{19}{\rm F}) = 4.3 \pm 2.7$ g)	< 60

Table 19.30 Resonances in ${}^{15}O(\alpha, \gamma){}^{19}Ne^{a}$)

^a) See Table 1 in (90MA05).

^b) The energies of these resonances are known to ± 4 keV or better, except for the 1183-keV resonance, which is ± 10 keV.

 $^{\rm c})$ Widths from analog states in $^{19}{\rm F}.$

^d) Based on a reduced α -particle width of 0.06 from the ¹⁵N(⁶Li, d)¹⁹F reaction populating the bound mirror state in ¹⁹F.

^e) (87MA31).

f) (72RO01).

^g) (87AJ02).

h) See also (95MA1A).

$E(^{3}\text{He}) (\text{MeV})$	Resonance in	$\Gamma_{\rm c.m.}$ (MeV)	$E_{\rm x}~({\rm MeV})$	J^{π}
2.400	$p_{1\to 4}, p_{5,6,7}, \alpha_0$	0.355	10.46	$\frac{1}{2}^+$
2.425	$p_{1\to 4}, p_{5,6,7}, \alpha_0$	0.045	10.48	$\frac{3}{2}^{+}$
3.65	$p\gamma$, ³ He, α_0	0.025	11.51 ± 0.05	$\frac{3}{2}^{-}, (\frac{1}{2}^{-})$
4.50	3 He, α_{0}	0.200 ± 0.025	12.23 ± 0.05	$\frac{5}{2}^{+}$
4.70	³ He, α_0	0.180 ± 0.025	12.40 ± 0.05	$\frac{7}{2}^{+}$
5.05	$p_0, p_1, p_5, {}^{3}He$	0.18 ± 0.04	12.69 ± 0.05	$\frac{1}{2}^{+}$
$6.37^{\rm \ b})$	$\gamma_0, \ \gamma_{1+2}$	0.67 ± 0.25	13.8 ± 0.25	
$7.65^{\ b})$	γ_{1+2}	0.62 ± 0.13	14.88 ± 0.13	
$9.26^{\rm b})$	γ_{1+2} , n	0.40 ± 0.13	16.23 ± 0.13	
11.8 ^b)	$\gamma_{0 \rightarrow 2}$	4.4 ± 0.5	18.4 ± 0.5	

Table 19.31 Resonances reported in ${}^{16}O + {}^{3}He^{a}$)

^a) See reaction 2, ¹⁹Ne, in (78AJ03) for references. ^b) $(2J+1)\Gamma_{3He}\Gamma_{\gamma} = 30 \pm 17, 89 \pm 44, 18 \pm 4, \text{ and } 17000 \pm 5300 \text{ keV}^2 \text{ for } {}^{19}\text{Ne}^*$ (13.8, 14.9, 16.2, 18.4) (83WA05).

Excitation functions at 90° for γ_{0-2} , γ_{3-5} and γ_6 [reaction (a)] have been measured for $E(^{3}\text{He}) = 3$ to 19 MeV (83WA05): see Table 19.31 for a listing of the resonances reported in this and in the other channels. See also (83AJ01, 87AJ02) and (90AB1G, 91SU17, 92CO08).

4. ¹⁶O(
$$\alpha$$
, n)¹⁹Ne $Q_{\rm m} = -12.134$

Gamma transitions have been observed from the first six excited states of ¹⁹Ne: see Table 19.25 in (78AJ03) and Table 19.28 here. Angular distributions of many neutron groups have been studied at $E_{\alpha} = 41$ MeV: see (83AJ01).

5. ¹⁶O(⁶Li, t)¹⁹Ne
$$Q_{\rm m} = -7.352$$

This reaction and the mirror reaction ${}^{16}O({}^{6}Li, {}^{3}He){}^{19}F$ have been studied at $E({}^{6}Li) = 24, 35, 36, and 46$ MeV: see (78AJ03, 83AJ01). Table 19.16 displays the analog states observed in the two reactions. In addition triton groups are reported to states with $E_x = 6.08, 6.28, 6.85, 7.21, 8.08, 8.45, 8.94, 9.81, 10.01, 11.08, 11.24, 11.40, 12.56 [all<math>\pm 0.02$], 13.1, 13.22, 14.18, 14.44, 14.78 [remaining, ± 0.3] MeV. See also (83CU02) and the preliminary report in (92ROZZ).

6. ¹⁶O(¹⁰B, ⁷Li)¹⁹Ne
$$Q_{\rm m} = -9.345$$

This as well as the analog reaction [¹⁶O(¹⁰B, ⁷Be)¹⁹F] have been studied at $E(^{10}B) =$ 100 MeV. On the basis of similar yields and E_x , and in addition to the low-lying analogs, it is suggested that the following pairs of states are analogs in ¹⁹F-(¹⁹Ne): 8.98 (8.94), 11.33 (11.09), 12.79 (12.48), 14.15 (14.17), 14.99 (14.61) and 15.54 (15.40) [±100 keV]; however, problems of energy resolution are evident. See (83AJ01) for references on this and on other heavy-ion induced reactions.

7. ¹⁶O(¹²C, ⁹Be)¹⁹Ne
$$Q_{\rm m} = -17.836$$

This ³He stripping reaction was studied at $E(^{12}\text{C}) = 480 \text{ MeV} (88\text{KR11})$. The ground state, 0.2 MeV doublet and 1.5 MeV multiplet were weakly populated. High spin states at 2.8 MeV $(\frac{9}{2}^+)$ and 4.64 MeV $(\frac{13}{2}^+)$ were strongly populated and were inferred to belong to the (sd)³, 2N + L, g.s. band with $((1d_{5/2})^2 2s_{1/2})_{9/2^+}$ and $(1d_{5/2})^3_{13/2^+}$ configurations. Levels at 8.9, 9.88 and 10.41 MeV were inferred to have spin parities of $\frac{11}{2}^-$, $\frac{11}{2}^+$, and $\frac{13}{2}^+$. A $\frac{17}{2}^$ spin parity was proposed for the strongly populated 12.3 MeV level. 8. ${}^{17}O({}^{3}He, n){}^{19}Ne$ $Q_{\rm m} = 4.300$

Neutron- γ coincidence measurements lead to the determination of excitation energies $[E_{\rm x} = 4032.9 \pm 2.4, 4140 \pm 4, 4197.1 \pm 2.4, 4379.1 \pm 2.2, 4549 \pm 4, 4605 \pm 5, 4635 \pm 4 \text{ and} (5097 \pm 10) \text{ keV}], \tau_{\rm m}$ and branching ratios (see Table 19.28). On the basis of these it is suggested that ¹⁹Ne* (4.14, 4.20) are the analogs of ¹⁹F* (4.03, 4.00) $[J^{\pi} = \frac{9}{2}^{-}, \frac{7}{2}^{-}]$ and that ¹⁹Ne* (4.55, 4.60) are the analogs of ¹⁹F* (4.556, 4.550) $J^{\pi} = \frac{5^{+}}{2}, \frac{3^{-}}{2}]$. There is no evidence for a reported state at $E_{\rm x} = 4.78$ MeV: see (78AJ03).

9. ¹⁸O(p,
$$\pi^{-}$$
)¹⁹Ne $Q_{\rm m} = -134.812$

This reaction (at $E_{\rm p} = 201$ MeV) selectively populates stretched 2p-1h states, in particular ¹⁹Ne* (4.64) $[J^{\pi} = \frac{13}{2}^+]$ and a structure near 10 MeV. Angular distributions and $A_{\rm y}$ are reported for ¹⁹Ne* (0, 2.80, 4.6) (86KE04). See also (87AJ02) and (90KU1H).

10. ¹⁹F(p, n)¹⁹Ne
$$Q_{\rm m} = -4.020$$

For a review of threshold measurements see (72AJ02, 76FR13). Measurements of the total cross section from threshold ($E_{\rm p} = 4.24$ MeV) to $E_{\rm p} = 28$ MeV are reported by (90WA10). Excited states of ¹⁹Ne determined from γ -spectra are displayed in Table 19.25 of (78AJ03). Branching ratio and $\tau_{\rm m}$ measurements are summarized in Table 19.28 here. For the *g*-factor of ¹⁹Ne* (0.24) see Table 19.27. Angular distributions have been measured at $E_{\rm p} = 160$ MeV to ¹⁹Ne* (0[0], 1.54[(0+2)], 5.4[0], 6.2[(0+1)], 7.1[(0+1)], 7.7[(0+1)], 8.60[(0)], 10.2[(1)], 11.0 [0], 12.1) (84RA22; [transferred angular momentum in brackets] also forward-angle $\sigma(\theta)$ at $E_{\rm p} = 120$ MeV). Spin-transfer coefficients were measured at $E_{\rm p} = 120$, 160 MeV by (90HUZY). See also ²⁰Ne in (87AJ02) and (87TA13, 89RA1G).

11. ¹⁹F(³He, t)¹⁹Ne
$$Q_{\rm m} = -3.257$$

Angular distributions have been obtained for the triton groups to ¹⁹Ne^{*} (0.24, 1.54, 2.79) at $E(^{3}\text{He}) = 26$ MeV: see (78AJ03). ¹⁹Ne levels at $E_{x} = 7.060/7.088$, 7.500, 7.531 and 7.620 MeV were measured to obtain $\Gamma_{p}/\Gamma_{\alpha}$ branching ratios (0.58 ± 0.08, 2.7 ± 0.9, 0.29 ± 0.09, and 0.34 ± 0.05, respectively) for determination of possible HCNO breakout reactions ¹⁸F(p, γ)¹⁹Ne and ¹⁸F(p, α)¹⁵O(α , γ)¹⁹Ne (93UTZZ).

12. (a) ${}^{20}\text{Ne}(n, 2n){}^{19}\text{Ne}$ (b) ${}^{20}\text{Ne} \rightarrow {}^{19}\text{Ne} + n$ Theoretical calculations of neutron-induced reaction cross sections on ²⁰Ne in the energy range 1–30 MeV were performed (91RE10). The shape and magnitude of the neutron yield from the breakup of ²⁰Ne [reaction (b)] was calculated in the high-energy region. using diffraction theory of processes of fragmentation of complex nuclei.

13. ²⁰Ne(³He,
$$\alpha$$
)¹⁹Ne $Q_{\rm m} = 3.713$

Alpha groups have been observed to ¹⁹Ne states with $E_x < 10.6$ MeV: see Tables 19.27 and 19.32. Angular distributions have been measured for $E({}^{3}\text{He}) = 10$ to 35 MeV: see (72AJ02). DWBA analysis of the strongest transitions leads to the *l* and J^{π} values shown in Table 19.32. ¹⁹Ne^{*} (0, 0.24, 1.54, 2.79) are identified as members of the $K^{\pi} = \frac{1}{2}^{+}$ rotational band [with ¹⁹Ne^{*} (4.38) as the $\frac{7}{2}^{+}$ member] and ¹⁹Ne^{*} (0.28, 1.51, 1.62) with the $K^{\pi} = \frac{1}{2}^{-}$ band. Candidates for the $\frac{7}{2}^{-}$ and $\frac{9}{2}^{-}$ members of the $K^{\pi} = \frac{1}{2}^{-}$ band are thought to be ¹⁹Ne^{*} (4.15, 4.20). Possible matching of other ¹⁹Ne states with those in ¹⁹F is also discussed: see (72AJ02). For lifetime and radiative decay measurements see Table 19.28. See also (87AJ02) and see (89MC1C) for use of this reaction for observing parity-violating effects.

14. ²¹Ne(p, t)¹⁹Ne
$$Q_{\rm m} = 15.144$$

At $E_{\rm p} = 40$ MeV the angular distributions to ¹⁹Ne^{*} (0.24, 4.03, 5.09) are well described by L = 2, 0 and 4, respectively. ¹⁹Ne^{*} (4.03), $J^{\pi} = \frac{3}{2}^{+}$, has a dominant 5p-2h configuration. ¹⁹Ne^{*} (5.09) has positive parity and the data are consistent with $J = \frac{5}{2}$. At $E_{\rm p} = 45$ MeV the triton group to a state with $E_{\rm x} = 7.620 \pm 0.025$ MeV has an angular distribution [L = 0] which is similar to that for ¹⁹F^{*} (7.66); both are thought to be the analogs of the $(J^{\pi};T) = (\frac{3}{2}^{+};\frac{3}{2})$ 0.096 MeV first excited state of ¹⁹O. The ground state of ¹⁹O has $J^{\pi} = \frac{5}{2}^{+}$; L for the analog state should be 2. ¹⁹Ne^{*} (0, 2.79) are also populated: see (78AJ03, 83AJ01).

¹⁹Na

(Fig. 19.4)

This nucleus was observed in the ²⁴Mg(p, ⁶He)¹⁹Na reaction at $E_p = 54.7$ MeV (69CE01). A study via the ²⁴Mg(³He, ⁸Li)¹⁹Na reaction at $E(^{3}He) = 76.3$ MeV leads to an atomic mass excess of 12.929 ± 0.012 MeV for ¹⁹Na; it is then unstable with respect to breakup into ¹⁸Ne + p by 321 ± 13 keV. An excited state at $E_x = 120 \pm 10$ keV is also reported (75BE38, 93AU05). See also (87AJ02) and (87PO01, 87SA24, 88CO15, 90PO04, 92AV03).

^{19}Mg

(Not observed)

See (87AJ02) and (87GU1K, 87PO01, 93HI08).
$E_{\rm x} ({\rm MeV} \pm {\rm keV})$	$l_{ m n}$	J^{π}	$E_{\rm x} \ ({\rm MeV \pm keV}) \qquad l_{\rm n} = J^{\pi}$
0	0	$\frac{1}{2}^{+}$	6.862 ± 7
0.2384 ± 0.15	2	$\frac{5}{2}^{+}$	7.067 ± 9
0.27530 ± 0.2	1	$\frac{1}{2}^{-}$	(7.178 ± 15)
1.5040 ± 3		$(\frac{5}{2}^{-})$	7.253 ± 10
1.5324 ± 3		$(\frac{3}{2})^+$	(7.326 ± 15)
1.6115 ± 3	1	$(\frac{3}{2})^{-}$	(7.531 ± 15)
2.7917 ± 3	4, 5	$(\frac{9}{2}^{+})$	7.614 ± 20
4.036 ± 10	2	$(\frac{3}{2}, \frac{5}{2})^+$	7.700 ± 10
4.142 ± 10			(7.788 ± 10)
4.200 ± 10			7.994 ± 15
4.379 ± 10			8.063 ± 15
4.551 ± 10	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	$8.236 \pm 10^{-\mathrm{b}})$
4.625 ± 10			8.440 ± 10
4.712 ± 10			8.523 ± 10
4.783 ± 20			(8.810 ± 25)
5.089 ± 7			8.915 ± 10
5.351 ± 10	0	$\frac{1}{2}^{+}$	9.013 ± 10
5.424 ± 7			9.100 ± 20
5.463 ± 20			9.240 ± 20
5.539 ± 9			9.489 ± 25
5.832 ± 9			$9.886 \pm 50^{-\mathrm{b}})$
6.013 ± 7	1	$(\frac{3}{2}, \frac{1}{2})^{-}$	10.407 ± 30 ^b)
6.094 ± 8			10.613 ± 20
6.149 ± 20			
6.289 ± 7			
6.437 ± 9			
6.742 ± 7	1	$(\frac{3}{2}, \frac{1}{2})^{-}$	

Table 19.32 $^{19}\mathrm{Ne}$ levels from $^{20}\mathrm{Ne}(^{3}\mathrm{He},\,\alpha)$ ^)

^a) See Table 19.27 of (78AJ03) for additional results and for a listing of the references.
^b) Unresolved states.

$^{19}\mathrm{F}$		19 N	е	$\Delta E_{\rm x} \ ({\rm MeV})^{\rm b})$	
$E_{\rm x}~({\rm MeV})$	J^{π}	$E_{\rm x}~({\rm MeV})$	J^{π}		
0	$\frac{1}{2}^{+}$	0	$\frac{1}{2}^{+}$		
0.110	$\frac{1}{2}^{-}$	0.275	$\frac{1}{2}^{-}$	+0.17	
0.197	$\frac{5}{2}^{+}$	0.238	$\frac{5}{2}^{+}$	+0.04	
1.35	$\frac{5}{2}^{-}$	1.51	$\frac{5}{2}^{-}$	+0.16	
1.46	$\frac{3}{2}^{-}$	1.62	$\frac{3}{2}^{-}$	+0.16	
1.55	$\frac{3}{2}^{+}$	1.53	$\frac{3}{2}^{+}$	-0.02	
2.78	$\frac{9}{2}^{+}$	2.79	$\frac{9}{2}^{+}$	+0.01	
3.91	$\frac{3}{2}^{+}$	4.03	$\frac{3}{2}^{+}$	+0.12	
4.00	$\frac{7}{2}^{-}$	4.20	$(\frac{7}{2})^{-}$	+0.20	
4.03	$\frac{9}{2}^{-}$	4.14	$(\frac{9}{2})^{-}$	+0.11	
4.38	$\frac{7}{2}^{+}$	4.38	$(\frac{7}{2})^+$	+0.001	
4.55	$\frac{5}{2}^{+}$	4.60	$(\frac{5}{2})^+$	+0.05	
4.56	$\frac{3}{2}^{-}$	4.55	$(\frac{1}{2}, \frac{3}{2})^{-}$	-0.007	
4.65	$\frac{13}{2}^+$	4.64	$\frac{13}{2}^+$	-0.01	
4.68	$\frac{5}{2}^{-}$	4.72	$(\frac{5}{2})^{-}$	+0.03	
5.11	$\frac{5}{2}^{+}$	5.09	$\frac{5}{2}^{+}$	-0.01	
5.34	$\frac{1}{2}^{(+)}$	5.35	$\frac{1}{2}^{+}$	+0.01	

Table 19.33 Mirror states in A = 19 nuclei ^a)

^a) As taken from Tables 19.9 and 19.27. ^b) Defined as $E_{\rm x}(^{19}{\rm Ne}) - E_{\rm x}(^{19}{\rm F})$.

¹⁹ O		$^{19}\mathrm{F}$		$^{19}\mathrm{Ne}$		19 Na	
$E_{\rm x}~({\rm MeV})$	J^{π}	$E_{\rm x}~({\rm MeV})$	$J^{\pi}; T$	$E_{\rm x}~({\rm MeV})$	$J^{\pi}; T$	$E_{\rm x}~({\rm MeV})$	J^{π}
0	$\frac{5}{2}^{+}$	7.54	$\frac{5}{2}^+; \frac{3}{2}$				
0.096	$\frac{3}{2}^{+}$	7.66	$\frac{3}{2}^+; \frac{3}{2}$	7.62	$\frac{3}{2}^+; \frac{3}{2}$		
1.47	$\frac{1}{2}^{+}$	8.79	$\frac{1}{2}^+; \frac{3}{2}$				
2.37	$\frac{9}{2}^{+}$	9.93	$\frac{9}{2}^+; \frac{3}{2}$				
3.07	$(\frac{3}{2})^+$	10.56	$\frac{3}{2}^+; (\frac{3}{2})$				
3.15	$\frac{5}{2}^{+}$	10.61	$\frac{5}{2}^+; \frac{3}{2}$				
		11.57	$T = \frac{3}{2}$				
4.11	$\frac{3}{2}^{+}$	11.65	$\frac{3}{2}^+; (\frac{3}{2})$				
4.58	$\frac{3}{2}^{-}$	12.14	$\frac{3}{2}^{-}; \frac{3}{2}$				
5.08	$\frac{1}{2}^{-}$	12.58	$\frac{1}{2}^{-}; \frac{3}{2}$				
5.15	$\geq \frac{5}{2}^+$	12.78	$\frac{5}{2}^+; \frac{3}{2}$				
5.54	$\frac{3}{2}^{+}$	12.86	$\frac{3}{2}^+; \frac{3}{2}$				
5.70	$\frac{7}{2}^{-}$	13.32	$\frac{7}{2}^{-}; (\frac{3}{2})$				
6.27	$\frac{7}{2}^{-}$	13.73	$\frac{7}{2}^{-}; \frac{3}{2}$				

Table 19.34 Isospin quadruplet components $(T=\frac{3}{2})$ in A=19 nuclei $^{\rm a})$

 $^{\rm a})$ As taken from Tables 19.2, 19.9 and 19.27.

References

(Closed October 31, 1994)

References are arranged and designated by the year of publication followed by the first two letters of the first-mentioned author's name and then by two additional characters. Most of the references appear in National Nuclear Data Center files (Nuclear Science References Database) and have NNDC key numbers. Otherwise, TUNL key numbers were assigned with the last two characters of the form 1A, 1B, etc. In response to many requests for more informative citations, we have, when possible, included up to 10 authors per paper and added the authors' initials.

- 37LI1A M.S. Livingston and H.A. Bethe, Rev. Mod. Phys. 9 (1937) 245
- 48HO1A W.F. Hornyak and T. Lauritsen, Rev. Mod. Phys. 20 (1948) 191
- 49LA1A T. Lauritsen, N.R.C. Preliminary Report No. 5 (1949)
- 50HO1A W.F. Hornyak, T. Lauritsen, P. Morrison and W.A. Fowler, Rev. Mod. Phys. 22 (1950) 291
- 52AJ38 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 24 (1952) 321
- 55AJ61 F. Ajzenberg and T. Lauritsen, Rev. Mod. Phys. 27 (1955) 77
- 59AJ76 F. Ajzenberg and T. Lauritsen, Nucl. Phys. 11 (1959) 1
- 62HI06 S. Hinds, H. Marchant and R. Middleton, Nucl. Phys. 38 (1962) 81
- 64BA16 J.K. Bair, C.M. Jones and H.B. Willard, Nucl. Phys. 53 (1964) 209
- 66LA04 T. Lauritsen and F. Ajzenberg-Selove, Nucl. Phys. 78 (1966) 1
- 68AJ02 F. Ajzenberg-Selove, Nucl. Phys. A114 (1968) 1
- 69BL18 J. Bleck, D.W. Haag and W. Ribbe, Nucl. Instrum. Methods Phys. Res. 67 (1969) 169
- 69CE01 J. Cerny, R.A. Mendelson, Jr., G.J. Wozniak, J.E. Esterl and J.C. Hardy, Phys. Rev. Lett. 22 (1969) 612
- 70AJ04 F. Ajzenberg-Selove, Nucl. Phys. A152 (1970) 1
- 71AJ02 F. Ajzenberg-Selove, Nucl. Phys. A166 (1971) 1
- 72AJ02 F. Ajzenberg-Selove, Nucl. Phys. A190 (1972) 1
- 72RO01 D.W.O. Rogers, J.G. Aitken and A.E. Litherland, Can. J. Phys. 50 (1972) 268
- 73JO13 P.L. Jolivette, Phys. Rev. C8 (1973) 1230
- 73OL02 J.W. Olness, E.K. Warburton and J.A. Becker, Phys. Rev. C7 (1973) 2239
- 73RO03 C. Rolfs, A.M. Charlesworth and R.E. Azuma, Nucl. Phys. A199 (1973) 257
- 73RO04 C. Rolfs, W.E. Kieser, R.E. Azuma and A.E. Litherland, Nucl. Phys. A199 (1973) 274
- 73RO06 C. Rolfs, I. Berka and R.E. Azuma, Nucl. Phys. A199 (1973) 306
- 74AJ01 F. Ajzenberg-Selove and F. Lauritsen, Nucl. Phys. A227 (1974) 1
- 74ES02 J.L. Escudie, R. Lombard, M. Pignanelli, F. Resmini and A. Tarrats, Phys. Rev. C10 (1974) 1645
- 74SE01 S. Sen, S.E. Darden, H.R. Hiddleston and W.A. Yoh, Nucl. Phys. A219 (1974) 429
- 75AJ02 F. Ajzenberg-Selove, Nucl. Phys. A248 (1975) 1
- 75BE38 W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann and L.W. Robinson, Phys. Lett. B58 (1975) 46
- 75SO05 K.H. Souw, J.C. Adloff, D. Disdier and P. Chevallier, Phys. Rev. C11 (1975) 1899
- 76AJ04 F. Ajzenberg-Selove, Nucl. Phys. A268 (1976) 1

- 76AL07 D.E. Alburger, Phys. Rev. C13 (1976) 2593
- 76CH24 L.C. Chen, Phys. Rev. C14 (1976) 2069
- 76FR13 J.M. Freeman, Nucl. Instrum. Methods Phys. Res. 134 (1976) 153
- 76LA13 R.D. Lawson, F.J.D. Serduke and H.T. Fortune, Phys. Rev. C14 (1976) 1245
- 77AJ02 F. Ajzenberg-Selove, Nucl. Phys. A281 (1977) 1
- 77FO10 H.T. Fortune and H.G. Bingham, Nucl. Phys. A293 (1977) 197
- 78AJ03 F. Ajzenberg-Selove, Nucl. Phys. A300 (1978) 1
- 78LEZA C.M. Lederer, V.S. Shirley, E. Browne, J.M. Dairiki, R.E. Doebler, A.A. Shihab-Eldin, L.J. Jardine, J.K. Tuli and A.B. Buyrn, Table of Isotopes 7th ed. (New York: John Wiley & Sons, 1978)
- 78SY01 T.J.M. Symons, L.K. Fifield, M.J. Hurst, F. Watt, C.H. Zimmerman and K.W. Allen, J. Phys. G4 (1978) 411
- 79AJ01 F. Ajzenberg-Selove, Nucl. Phys. A320 (1979) 1
- 79FE06 M.P. Fewell, A.M. Baxter, D.C. Kean, R.H. Spear and T.H. Zabel, Nucl. Phys. A321 (1979) 457
- 79KI12 W.E. Kieser, R.E. Azuma, I. Berka, K.P. Jackson, A.B. McDonald, H.B. Mak, and W. McLatchie, Nucl. Phys. A327 (1979) 172
- 79KI13 W.E. Kieser, R.E. Azuma and K.P. Jackson, Nucl. Phys. A331 (1979) 155
- 79KO26 L. Koester, K. Knopf and W. Waschkowski, Z. Phys. A292 (1979) 95
- 79LO01 H. Lorenz-Wirzba, P. Schmalbrock, H.P. Trautvetter, M. Wiescher, C. Rolfs and W.S. Rodney, Nucl. Phys. A313 (1979) 346
- 79MU05 G. Murillo, M. Fernandez, P. Perez, J. Ramirez, S.E. Darden, M.C. Cobian-Rozak and L. Montestruque, Nucl. Phys. A318 (1979) 352
- 79WO04 J.G. Woodworth, K.G. McNeill, J.W. Jury, R.A. Alvarez, B.L. Berman, D.D. Paul and P. Meyer, Phys. Rev. C19 (1979) 1667
- 80AJ01 F. Ajzenberg-Selove, Nucl. Phys. A336 (1980) 1
- 80MA26 H.-B. Mak, G.T. Ewan, H.C. Evans, J.D. MacArthur, W. McLatchie and R.E. Azuma, Nucl. Phys. A343 (1980) 79
- 80NA14 F. Naulin, C. Detraz, M. Bernas, D. Guillemaud, E. Kashy, M. Langevin, F. Pougheon, P. Roussel and M. Roy-Stephan, J. Phys. Lett. 41 (1980) L79
- 80VE1A W.J. Vermeer, M.Sc. Thesis, Auckland University (1980)
- M. Wiescher, H.W. Becker, J. Gorres, K.-U. Kettner, H.P. Trautvetter, W.E. Kieser, C. Rolfs,
 R.E. Azuma, K.P. Jackson and J.W. Hammer, Nucl. Phys. A349 (1980) 165
- 81AD05 E.G. Adelberger, M.M. Hindi, C.D. Hoyle, H.E. Swanson and R.D. von Lintig, Phys. Rev. C24 (1981) 313
- 81AJ01 F. Ajzenberg-Selove, Nucl. Phys. A360 (1981) 1
- 81CO13 M.E. Cobern, L.C. Bland, H.T. Fortune, G.E. Moore, S. Mordechai and R. Middleton, Phys. Rev. C23 (1981) 2387
- 81CU07 A. Cunsolo, A. Foti, G. Imme, G. Pappalardo, G. Raciti and N. Saunier, Phys. Rev. C24 (1981) 476
- 81GL02 C.W. Glover and K.W. Kemper, Nucl. Phys. A366 (1981) 469
- 81LE1A F. Leccia, P. Mennrath, A. Morales, J. Morales, R. Nunez-Lagos and M. Plo, An. Fis. A77 (1981) 114
- 81ME13 M.C. Mermaz, J. Barrette and H.E. Wegner, Phys. Rev. C24 (1981) 2148

- 81MUZQ S.F. Mughabghab, M. Divadeenam and N.E. Holden, Neutron Cross Sections, Vol. 1, Neutron Resonance Parameters and Thermal Cross Sections, Part A, Z=1-60 (New York: Academic Press, 1981)
- 81NE09 A.V. Nero, E.G. Adelberger and F.S. Dietrich, Phys. Rev. C24 (1981) 1864
- 82AB04 M.S. Abdel-Wahab, L. Potvin, R. Roy, P. Bricault, R. Larue, D. Pouliot, C. Rioux and R.J. Slobodrian, Can. J. Phys. 60 (1982) 1595
- 82AH07 G. Ahrens, W. Harfst, J.R. Kass, E.V. Mason, H. Schober, G. Steffens, H. Waeffler, P. Bock and K. Grotz, Nucl. Phys. A390 (1982) 486
- 82AJ01 F. Ajzenberg-Selove, Nucl. Phys. A375 (1982) 1
- 82AN12 M.S. Antony, J. Phys. G8 (1982) 1659
- 82AV1A Averyanoy, Golubev and Sadovi, Sov. J. Nucl. Phys. 35 (1982) 484
- 82BA03 K. Bangert, U.E.P. Berg, G. Junghans, R. Stock and K. Wienhard, Nucl. Phys. A376 (1982) 15
- 82BA06 G.C. Ball, T.K. Alexander, W.G. Davies, J.S. Forster and I.V. Mitchell, Nucl. Phys. A377 (1982) 268
- 82BA40 G.C. Ball, T.K. Alexander, W.G. Davies, J.S. Forster, I.V. Mitchell, J. Keinonen and H. B. Mak, Nucl. Phys. A386 (1982) 333
- 82BA49 Z. Basrak, R. Caplar, C. Beck, R.M. Freeman and F. Haas, Phys. Rev. C26 (1982) 1774
- 82BE29 H.W. Becker, W.E. Kieser, C. Rolfs, H.P. Trautvetter and M. Wiescher, Z. Phys. A305 (1982) 319
- 82CU01 A. Cunsolo, A. Foti, G. Imme, G. Pappalardo, G. Raciti and N. Saunier, Phys. Lett. B112 (1982) 121
- 82DE30 L.C. Dennis, K.M. Abdo, A.D. Frawley and K.W. Kemper, Phys. Rev. C26 (1982) 981
- 82DI11 G.U. Din, J.A. Cameron, V. Janzen and R. Schubank, Nucl. Phys. A385 (1982) 256
- 82EL08 K. Elsener, W. Gruebler, V. Konig, C. Schweizer, P.A. Schmelzbach, J. Ulbricht, F. Sperisen and M. Merdzan, Phys. Lett. B117 (1982) 167
- 82FI10 L.K. Fifield, J.L. Durell, M.A.C. Hotchkis, J.R. Leigh, T.R. Ophel and D.C. Weisser, Nucl. Phys. A385 (1982) 505
- 82FR15 R.M. Freeman, P.A. DeYoung, L.J. Satkowiak, M.A. Xapsos and J.J. Kolata, Nucl. Phys. A385 (1982) 516
- 82GL08 C. Glashausser, R. de Swiniarski, K. Jones, S. Nanda, F.T. Baker, M. Grimm, V. Penumetcha,
 A. Scott, G. Adams, G. Igo et al, Phys. Lett. B116 (1982) 215
- 82HE04 A.M. Hernandez and W.W. Daehnick, Phys. Rev. C25 (1982) 2957
- 82HE07 B. Heusch, C. Beck, J.P. Coffin, P. Engelstein, R.M. Freeman, G. Guillaume, F. Haas and P. Wagner, Phys. Rev. C26 (1982) 542
- 82HU06 M. Hugi, J. Lang, R. Muller, J. Sromicki, E. Ungricht, K. Bodek, L. Jarczyk, B. Kamys, A. Strzalkowski and H. Witala, Phys. Rev. C25 (1982) 2403
- 82KO24 J.J. Kolata, E.G. Funk and J.D. Hinnefeld, Phys. Rev. C26 (1982) 1750
- 82KR05 H. Krawinkel, H.W. Becker, L. Buchmann, J. Gorres, K.U. Kettner, W.E. Kieser, R. Santo, P. Schmalbrock, H.P. Trautvetter, A. Vlieks et al, Z. Phys. A304 (1982) 307
- 82MA39 D.W. MacArthur, F.P. Calaprice, A.L. Hallin, M.B. Schneider and D.F. Schreiber, Phys. Rev. C26 (1982) 1753
- 82MO09 R. Moro, A. Brondi, A. D'Onofrio, V. Roca, M. Romano, F. Terrasi and B. Delaunay, Lett. Nuovo Cim. 33 (1982) 407
- B.E. Norum, M.V. Hynes, H. Miska, W. Bertozzi, J. Kelly, S. Kowalski, F.N. Rad, C.P. Sargent,
 T. Sasanuma, W. Turchinetz et al, Phys. Rev. C25 (1982) 1778

- 82OL01 J.W. Olness, E.K. Warburton, D.E. Alburger, C.J. Lister and D.J. Millener, Nucl. Phys. A373 (1982) 13
- 82OL02 J.W. Olness, E.K. Warburton and D.E. Alburger, Nucl. Phys. A378 (1982) 539
- 82PI06 E. Piasetzky, A. Altman, J. Lichtenstadt, A.I. Yavin, D. Ashery, W. Bertl, L. Felawka, H.K.
 Walter, F.W. Schleputz, R.J. Powers et al, Phys. Rev. C26 (1982) 2702
- 82RA1A J. Rapaport, Phys. Rep. 87 (1982) 25
- 82RE14 K.E. Rehm, W. Henning, J.R. Erskine and D.G. Kovar, Phys. Rev. C26 (1982) 1010
- 82VE05 W.J. Vermeer and A.R. Poletti, J. Phys. G8 (1985) 851
- 82VE13 J. Vernotte, G. Berrier-Ronsin, J. Kalifa and R. Tamisier, Nucl. Phys. A390 (1982) 285
- 83AD03 E.G. Adelberger, M.M. Hindi, C.D. Doyle, H.E. Swanson, R.D. von Lintig and W.C. Haxton, Phys. Rev. C27 (1983) 2833
- 83AJ01 F. Ajzenberg-Selove, Nucl. Phys. A392 (1983) 1
- 83AN05 B.D. Anderson, A. Fazely, R.J. McCarthy, P.C. Tandy, J.W. Watson, R. Madey, W. Bertozzi,
 T.N. Buti, J.M. Finn, J. Kelly et al, Phys. Rev. C27 (1983) 1387
- 83ANZQ Y. Ando, M. Uno and M. Yamada, JAERI-M-83-025 (1983)
- 83AR1B K.P. Artemov, V.Z. Gol'dberg, M.S. Golovkov, B.G. Novatskii, I.P. Petrov, V.P. Rudakov, I.N. Serikov and V.A. Timofeev, Sov. J. Nucl. Phys. 37 (1983) 805
- Bar, B.F. Geesaman, R.J. Holt, H.E. Jackson, J.R. Specht, K.E. Stephenson, R.E. Segel,
 P. Zupranski, H.W. Baer, J.D. Bowman et al, Phys. Rev. Lett. 50 (1983) 482
- 83BE36 D. Bender, A. Richter, E. Spamer, E.J. Ansaldo, C. Rangacharyulu and W. Knupfer, Nucl. Phys. A406 (1983) 504
- 83BI03 J. Billowes, J. Asher, D.W. Bennett, J.A.G. de Raedt, M.A. Grace and B.J. Murphy, J. Phys. G9 (1983) 293
- 83CA21 W.N. Catford, E.F. Garman, D.M. Pringle and L.K. Fifield, Nucl. Phys. A407 (1983) 255
- 83CU02 A. Cunsolo, A. Foti, G. Imme, G. Pappalardo, G. Raciti and N. Saunier, Phys. Lett. B124 (1983) 439
- 83CU03 A. Cunsolo, A. Foti, G. Imme, G. Pappalardo, G. Raciti and N. Saunier, Lett. Nuovo Cim. 37 (1983) 193
- 83DU13 G.G. Dussel, A.O. Gattone and E.E. Maqueda, Phys. Rev. Lett. 51 (1983) 2366
- 83EN02 F. Entezami, J.D. Brown, K.S. Dhuga, O. Karban, J.M. Nelson and S. Roman, Nucl. Phys. A405 (1983) 69
- 83ET02 M.C. Etchegoyen, D. Sinclair, A. Etchegoyen and E. Belmont Moreno, Nucl. Phys. A402 (1983)
 87
- 83GA02 M. Gai, M. Ruscev, A.C. Hayes, J.F. Ennis, R. Keddy, E.C. Schloemer, S.M. Sterbenz and D.A. Bromley, Phys. Rev. Lett. 50 (1983) 239
- 83GR10 E.E. Gross, J.R. Beene, K.A. Erb, M.P. Fewell, D. Shapira, M.J. Rhoades-Brown, G.R. Satchler and C.E. Thorn, Nucl. Phys. A401 (1983) 362
- 83GR28 E.E. Gross and M.P. Fewell, Nucl. Phys. A411 (1983) 329
- 83HA1B M.J. Harris, W.A. Fowler, G.R. Caughlin and B.A. Zimmerman, Ann. Rev. Astron. Astrophys. 21 (1983) 165
- 83JA09 L. Jarczyk, B. Kamys, Z. Rudy, A. Strzalkowski, H. Witala, M. Hugi, J. Lang, R. Muller, J. Sromicki and H.H. Wolter. Phys. Rev. C28 (1983) 700
- 83KI13 M.M. King Yen, S.T. Hsieh and D.S. Chuu, J. Phys. G9 (1983) 1347
- 83LE03 P.M. Lewis, A.K. Basak, J.D. Brown, P.V. Drumm, O. Karban, E.C. Pollacco and S. Roman, Nucl. Phys. A395 (1983) 204

- 83LE08 F. Leccia, Ph. Hubert, P. Mennrath, A. Morales, J. Morales, R. Nunez-Lagos and M. Plo, Nuovo Cim. A74 (1983) 28
- 83MA16 C.J. Martoff, J.A. Bistirlich, C.W. Clawson, K.M. Crowe, M. Koike, J.P. Miller, S.S. Rosenblum, W.A. Zajc, H.W. Baer, A.H. Wapstra et al, Phys. Rev. C27 (1983) 1621
- 83MO16 R. Moro, A. Brondi, A. D'Onofrio, V. Roca, M. Romano, F. Terrasi, B. Delaunay and H. Dumont, Lett. Nuovo Cim. 38 (1983) 7
- 83OS07 A. Osman and S.S. Abdel-Aziz, Acta Phys. Hung. 54 (1983) 9
- 83PU01 G.D. Putt, L.K. Fifield, M.A.C. Hotchkis, T.R. Ophel and D.C. Weisser, Nucl. Phys. A399 (1983) 190
- B. Pugh, W. Bertozzi, T.N. Buti, J.M. Finn, C. Hyde, J.J. Kelly, M.A. Kovash, B. Murdock,
 B.D. Anderson, A.R. Baldwin et al, Bull. Am. Phys. Soc. 28 (1983) 690
- 83RU09 K. Rusek, Z. Moroz, R. Caplar, P. Egelhof, K.-H. Mobius, E. Steffens, I. Koenig, A. Weller and D. Fick, Nucl. Phys. A407 (1983) 208
- 83SN03 K.A. Snover, E.G. Adelberger, P.G. Ikossi and B.A. Brown, Phys. Rev. C2 (1983) 1837
- 83WA05 C.E. Waltham, S.H. Chew, J. Lowe, J.M. Nelson and A.R. Barnett, Nucl. Phys. A395 (1983) 119
- 84AJ01 F. Ajzenberg-Selove, Nucl. Phys. A413 (1984) 1
- 84AL20 A. Altman, D. Ashery, E. Piasetzky, J. Lichtenstadt, A.I. Yavin, W. Bertl, L. Felawka, H.K. Walter, R.J. Powers, R.G. Winter et al, Phys. Lett. B144 (1984) 337
- 84AS03 J. Asher, D.W. Bennett, H.A. Doubt, M.A. Grace, T.J. Moorhouse and B.J. Murphy, J. Phys. G10 (1984) 1079
- 84AS05 D. Ashery, D.F. Geesaman, R.J. Holt, H.E. Jackson, J.R. Specht, K.E. Stephenson, R.E. Segel,
 P. Zupranski, H.W. Baer, J.D. Bowman et al, Phys. Rev. C30 (1984) 946
- 84BA24 F.C. Barker, Aust. J. Phys. 37 (1984) 17
- 84BH01 R.K. Bhowmik, W.D.M. Rae and B.R. Fulton, Phys. Lett. B136 (1984) 149
- 84BU1A Burks et al, Bull. Amer. Phys. Soc. 29 (1984) 1026
- 84CO05 J. Cook, L.C. Dennis, K.W. Kemper, T.R. Ophel, A.F. Zeller, C.F. Maguire and Z. Kui, Nucl. Phys. A415 (1984) 114
- 84DE1A P. DeBievre, M. Gallet, N.E. Holden and I.L. Barnes, J. Phys. Chem. Ref. Data 13 (1984) 809
- 84DE1B D.M. De Castro Rizzo, E. Bozek, S. Cavallaro, B. Delaunay, J. Delaunay, M.G. Saint-Laurent and F. Terrasi, Nucl. Phys. A427 (1984) 151
- 84FR14 R. Frick, H. Clement, G. Graw, P. Schiemenz, N. Seichert and Sun Tsu-Hsun, Z. Phys. A319 (1984) 133
- 84GI10 R. Gilman, H.T. Fortune, L.C. Bland, R.R. Kiziah, C.F. Moore, P.A. Seidl, C.L. Morris and W.B. Cottingame, Phys. Rev. C30 (1984) 962
- 84KE04 E. Kerkhove, H. Ferdinande, R. van de Vyver, P. Berkvens, P. van Otten, E. van Camp and D. Ryckbosch, Phys. Rev. C29 (1984) 2047
- 84MA32 C.F. Maguire, G.L. Bomar, L. Cleeman, J.H. Hamilton, R.B. Piercey, J.C. Peng, N. Stein and P.D. Bond, Phys. Rev. Lett. 53 (1984) 548
- 84MO06 Z. Moroz, K. Rusek, P. Egelhof, S. Kossionides, K.-H. Mobius, G. Tungate, E. Steffens, G. Grawert, I. Koenig and D. Fick, Nucl. Phys. A417 (1984) 498
- $84\mathrm{MO08}$ $\,$ S. Mordechai and H.T. Fortune, Phys. Rev. C29 (1984) 1765 $\,$
- 84MO28 S. Mordechai and H.T. Fortune, Phys. Rev. C30 (1984) 1924
- 84MU27 J.A. Musser and J.D. Stevenson, Phys. Rev. Lett. 53 (1984) 847
- 84NE1A Nemets, Rudchik and Chuvilski, 34th. Meeting on Nuclear Spectroscopy and the Structure of the At. Nucl., Alma Ata, USSR, 17-20 April 1984 (Nauka, 1984) 334

- 84OE02 W. Oelert, G. Palla, B. Rubio, M.G. Betigeri, C. Mayer-Boricke, P. Turek and H.T. Fortune, Phys. Rev. C30 (1984) 1378
- 84RA07 W.D.M. Rae and R.K. Bhowmik, Nucl. Phys. A420 (1984) 320
- 84RA17 W.D.M. Rae and R.K. Bhowmik, Nucl. Phys. A427 (1984) 142
- 84RA22 J. Rapaport, C. Gaarde, J. Larsen, C. Goulding, C.D. Goodman, C. Foster, D.J. Horen, T. Masterson, E. Sugarbaker and T.N. Taddeucci, Nucl. Phys. A431 (1984) 301
- 84SA28 V.S. Sadkovsky, G.A. Feofilov, A.E. Denisov, R.P. Kolalis and L. Peres Tamaio, Izv. Akad. Nauk SSSR Ser. Fiz. 48 (1984) 995
- 84SE1A Seestrom-Morris et al, Tenth Int. Conf. on Particles and nuclei, Heidelberg, 30 July-3 Aug. 1984 (Organizing Committee, 1984) F1
- 84TA08 T. Tachikawa, N. Kato, H. Fujita, K. Kimura, T. Sugimitsu, K. Morita, K. Anai, T. Inoue, H. Inoue, Y. Nakajima et al, Phys. Lett. B139 (1984) 267
- 84TA1A Tacik et al, Tenth Int. Conf. on Paricles and nuclei, Heidelberg, 30 July-3 Aug. 1984 (Organizing Committee, 1984) F13
- 85AJ01 F. Ajzenberg-Selove, Nucl. Phys. A449 (1985) 1
- A. Altman, R.R. Johnson, U. Wienands, N. Hessey, B.M. Barnett, B.M. Forster, N. Grion, D. Mills, F.M. Rozon, G.R. Smith et al, Phys. Rev. Lett. 55 (1985) 1273
- 85AN17 M.S. Antony, J. Britz, J.B. Bueb and V.B. Ndocko-Ndongue, Nuovo Cim. A88 (1985) 265
- 85BA1A J.M. Bang, F.G. Gareev, W.T. Pinkston and J.S. Vaagen, Phys. Rep. 125 (1985) 253
- B.M. Barnett, W. Gyles, R.R. Johnson, R. Tacik, K.L. Erdman, H.W. Roser, D.R. Gill, E.W.
 Blackmore, S. Martin, C.A. Wiedner et al, Phys. Lett. B156 (1985) 172
- 85BE40 C. Beck, F. Haas, R.M. Freeman, B. Heusch, J.P. Coffin, G. Guillaume, F. Rami and P. Wagner, Nucl. Phys. A442 (1985) 320
- 85BI03 M. Bini, T.F. Fazzini, G. Poggi and N. Taccetti, Phys. Rev. Lett. 55 (1985) 795
- 85BR15 B.A. Brown, B.H. Wildenthal, C.F. Williamson, F.N. Rad, S. Kowalski, H. Crannell and J.T. O'Brien, Phys. Rev. C32 (1985) 1127
- 85BR29 B.A. Brown and B.H. Wildenthal, At. Data Nucl. Data Tables 33 (1985) 347
- 85CA01 N. Carlin Filho, M.M. Coimbra, J.C. Acquadro, R. Liguori Neto, E.M. Szanto, E. Farrelly-Pessoa and A. Szanto de Toledo, Phys. Rev. C31 (1993) 152
- 85CA41 G.R. Caughlan, W. A. Fowler, M.J. Harris and B.A. Zimmerman, At. Data Nucl. Data Tables 32 (1985) 197
- 85DE1A C. Detraz, J. Phys. Soc. Jpn. 54 (1985) 27
- 85DI16 W.R. Dixon, D.W.O. Rogers, R.S. Storey and A.A. Pilt, Phys. Rev. C32 (1985) 2205
- 85DY05 P. Dyer, D. Bodansky, D.D. Leach, E.B. Norman and A.G. Seamster, Phys. Rev. C32 (1985) 1873
- 85EV03 H.C. Evans, G.T. Ewan, S.-P. Kwan, J.R. Leslie, J.D. MacArthur, H.-B. Mak, W. McLatchie,
 S.A. Page, P. Skensved, S.-S. Wang et al, Phys. Rev. Lett. 55 (1985) 791
- 85FO11 H.T. Fortune, L.C. Bland and W.D.M. Rae, J. Phys. G11 (1985) 1175
- 85GR1B C. Grama, N. Grama and Gh. Voiculescu, Rev. Roum. Phys. 30 (1985) 23
- 85HA11 J.S. Hanspal, R.J. Griffiths and N.M. Clarke, Phys. Rev. C31 (1985) 1138
- 85JO1A P.L. Jolivette, M.J. Honkanen, M. Young and E. Moser, Bull. Am. Phys. Soc. 30 (1985) 1248
- E. Kerkhove, R. van de Vyver, H. Ferdinande, D. Ryckbosch, P. van Otten, P. Berkvens and
 E. van Camp, Phys. Rev. C32 (1985) 368
- 85KE1C J. Keinonen, AIP Conf. Proc. 125 (1985) 557

- 85KO04 D. Konnerth, W. Trombik, K.G. Bernhardt, K.A. Eberhard, R. Singh, A. Strzalkowski and W. Trautmann, Nucl. Phys. A436 (1985) 538
- M. Langevin, E. Quiniou, M. Bernas, J. Galin, J.C. Jacmart, F. Naulin, F. Pougheon, R. Anne,
 C. Detraz, D. Guerreau et al, Phys. Lett. B150 (1985) 71
- 85MO20 S. Mordechai and H.T. Fortune, Phys. Rev. C32 (1985) 2207
- 85OH04 S. Ohkubo and Y. Ishikawa, Phys. Rev. C31 (1985) 1560
- 85PO10 N.A.F.M. Poppelier, L.D. Wood and P.W.M. Glaudemans, Phys. Lett. B157 (1985) 120
- 85RO01 G. Rosner, J. Pochodzalla, B. Heck, G. Hlawatsch, A. Miczaika, H.J. Rabe, R. Butsch, B. Kolb,
 B. Sedelmeyer, Phys. Lett. B150 (1985) 87
- P.A. Seidl, C.F. Moore, S. Mordechai, R. Gilman, K.S. Dhuga, H.T. Fortune, J.D. Zumbro,
 C.L. Morris, J.A. Faucett and G.R. Burleson, Phys. Lett. B154 (1985) 255
- 85SM04 A.E.Smith, S.C.Allcock, W.D.M.Rae, B.R.Fulton and D.W.Banes, Nucl. Phys. A441 (1985) 701
- 85TH03 J. Thomas, Y.T. Chen, S. Hinds, K. Langanke, D. Meredith, M. Olson and C.A. Barnes, Phys. Rev. C31 (1985) 1980
- 85VO12 K.F. von Reden, W.W. Daehnick, S.A. Dytman, R.D. Rosa, J.D. Brown, C.C. Foster, W.W. Jacobs and J.R. Comfort, Phys. Rev. C32 (1985) 1465
- 85WA02 A.H. Wapstra and G. Audi, Nucl. Phys. A432 (1985) 1
- 85WU03 J.Q. Wu, G. Bertsch and A.B. Balantekin, Phys. Rev. C32 (1985) 1432
- 86AD1A E. G. Adelberger, AIP Conf. Proc. 150 (1986) 1177
- 86AJ01 F. Ajzenberg-Selove, Nucl. Phys. A449 (1986) 1
- 86AJ04 F. Ajzenberg-Selove, Nucl. Phys. A460 (1986) 1
- A. Altman, D. Ashery, E. Piasetzky, J. Lichtenstadt, A.I. Yavin, W. Bertl, L. Felawka, H.K.
 Walter, R.J. Powers, R.G. Winter and J.v.d. Pluym, Phys. Rev. C34 (1986) 1757
- 86AN07 M.S. Antony, J. Britz and A. Pape, At. Data Nucl. Data Tables 34 (1986) 279
- 86AN1E B.D. Anderson, J.W. Watson and R. Madey, AIP Conf. Proc. 142 (1986) 155
- 86BR04 G. Bruge, A. Chaumeaux, P. Birien, D.M. Drake, D. Garreta, S. Janouin, D. Legrand, M.C. Lemaire, B. Mayer, J. Pain et al, Phys. Lett. B169 (1986) 14
- 86CH29 A.E. Champagne and M.L. Pitt, Nucl. Phys. A457 (1986) 367
- 86CO1F D.D. Cohen, A. Katsaros and S. Frisken, 11th Ainse Nucl. Phys. Conf., Melbourne, Australia, 1986 (Australian Inst. Nucl. Sci. & Eng., 1986) 16
- 86CU02 B. Cujec, B. Dasmahapatra, Q. Haider, F. Lahlou and R.A. Dayras, Nucl. Phys. A453 (1986) 505
- 86DO10 A.J.H. Donne, G. van Middelkoop, L. Lapikas, T. Suzuki, P.W.M. Glaudemans and D. Zwarts, Nucl. Phys. A455 (1986) 453
- 86DR03 P.V. Drumm, O. Karban, A.K. Basak, P.M. Lewis, S. Roman and G.C. Morrison, Nucl. Phys. A448 (1986) 93
- 86DU07 J.P. Dufour, R. Del Moral, A. Fleury, F. Hubert, D. Jean, M.S. Pravikoff, H. Delagrange, H. Geissel and K.-H. Schmidt, Z. Phys. A324 (1986) 487
- 86FUZV H. Fujita, N. Kato, T. Tachikawa, T. Sugimitsu, K. Kimura, Y. Ikeda, H. Yamaguchi, Y. Nakajima, Y. Sugiyama, Y. Tomita et al, Proc. Int. Nucl. Phys. Conf., Harrogate, UK (1986) 317
- 86GA13 E.N. Gazis, C.T. Papadopoulos, R. Vlastou and A.C. Xenoulis, Phys. Rev. C34 (1986) 872
- 86GL02 K. Glasner, L. Ricken and E. Kuhlmann, Nucl. Phys. A452 (1986) 150
- 86HA1H A.A. Haddou, M. Berrada and G. Paic, J. Radioanal. & Nucl. Chem. Artic. 102 (1986) 159
- 86HA1I W.C. Haxton, AIP Conf. Proc. 150 (1986) 738

- 86HA1J A.C. Hayes, D.A. Bromley and D.J. Millener, unpublished manuscript
- 86HEZW R. Helmer, W.P. Alford, A. Celler, O. Hausser, K. Hicks, K.P. Jackson, S. Yen, R. Henderson, C.A. Miller, A. Yavin et al, Bull. Am. Phys. Soc. 31 (1986) 1214
- 86IC01 H. Ichihara and H. Yoshida, Nucl. Phys. A448 (1993) 546
- 86IS09 B.S. Ishkhanov, I.M. Kapitonov and V.I. Mokeev, Izv. Akad. Nauk SSSR Ser. Fiz. 50 (1986)
 1974; Bull. Russ. Acad. Sci. 50:10 (1986) 101
- 86KA1C M. Kamimura, Y. Sakuragi, M. Yahiro and M. Tanifuji, J. Phys. Soc. Jpn. Suppl. 55 (1986) 205
- 86KA36 Y. Kadota, K. Ogino, K. Obori, Y. Taniguchi, T. Tanabe, M. Yasue and J. Schimizu, Nucl. Phys. A458 (1986) 523
- 86KE04 J.J. Kehayias, R.D. Bent, M.C. Green, M. Hugi, H. Nann and T.E. Ward, Phys. Rev. C33 (1986) 1388
- 86KE05 J. Kelly, W. Bertozzi, T.N. Buti, J.M. Finn, F.W. Hersman, M.V. Hynes, C. Hyde-Wright,
 B.E. Norum, A.D. Bacher, G.T. Emery et al, Phys. Lett. B169 (1986) 157
- 86KE1C J.J. Kelly, AIP Conf. Proc. 142 (1986) 27
- 86KO10 P.E. Koehler, H.D. Knox, D.A. Resler, R.O. Lane and G.F. Auchampaugh, Nucl. Phys. A453 (1986) 429
- 86KO1E H. Koch, AIP Conf. Proc. 150 (1986) 490
- 86KO22 Th. Kohler, P. Blum, G. Buche, A.D. Hancock, H. Koch, A. Kreissl, H. Poth, U. Raich, D. Rohmann, G. Backenstoss et al, Phys. Lett. B176 (1986) 327
- 86KR04 A. Krasznahorkay, T. Kibedi and Zs. Dombradi, Z. Phys. A323 (1986) 125
- 86LA07 K. Langanke, M. Wiescher, W.A. Fowler and J. Gorres, Astrophys. J. 301 (1986) 629
- M.-C. Lemaire, P. Birien, G. Bruge, D.M. Drake, D. Garreta, S. Janouin, D. Legrand, B. Mayer,
 J. Pain, J.C. Peng et al, Nucl. Phys. A456 (1986) 557
- 86MA13 J.F. Mateja, A.D. Frawley, R.A. Parker and K. Sartor, Phys. Rev. C33 (1986) 1307
- 86MA32 N. Matsuoka, H. Sakai, T. Saito, K. Hosono, M. Kondo, H. Ito, K. Hatanaka, T. Ichihara, A. Okihana, K. Imai et al, Nucl. Phys. A455 (1986) 413
- 86MA48 D.M. Manley, B.L. Berman, W. Bertozzi, J.M. Finn, F.W. Hersman, C.E. Hyde-Wright, M.V. Hynes, J.J. Kelly, M.A. Kovash, S. Kowalski et al, Phys. Rev. C34 (1986) 1214
- 86OU01 S. Ouichaoui, H. Beaumevielle, N. Bendjaballah and A. Genoux-Lubain, Nuovo Cim. A94 (1986) 133
- F. Pougheon, D. Guillemaud-Mueller, E. Quiniou, M.G. Saint Laurent, R. Anne, D. Bazin, M. Bernas, D. Guerreau, J.C. Jacmart, S.D. Hoath et al, Europhys. Lett. 2 (1986) 505
- 86SE1B N. Seichert, W. Assmann, H. Clement, G. Graw, C. Hategan, H. Kader, F. Merz and P. Schiemenz, J. Phys. Soc. Jpn. Suppl. 55 (1986) 646
- 86SE1C H.M. Sen Gupta, M.A. Zaman, F. Watt and M.J. Hurst, Nuovo Cim. A93 (1986) 217
- 86SM01 M.J. Smithson, D.L. Watson and H.T. Fortune, Phys. Rev. C33 (1986) 509
- 86ST1C S.M. Sterbenz, M. Gai, J.F. Shriner, Jr., P.D. Cottle, D.A. Bromley, M. Morando and R.A. Ricci, Bull. Am. Phys. Soc. 31 (1986) 839
- 86TA1B Tanaka et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 764
- 86TAZO T. Tachikawa, N. Kato, H. Fujita, K. Kimura, T. Sugimitsu, K. Anai, Y. Nakajima, K. Morita,
 M. Tanaka and S. Kubono, Proc. Int. Nucl. Phys. Conf., Harrogate, UK (1986) 313
- 86TH01 J. Thomas, Y.T. Chen, S. Hinds, D. Meredith and M. Olson, Phys. Rev. C33 (1986) 1679
- 86VI09 D.J. Vieira, J.M. Wouters, K. Vaziri, R.H. Kraus, Jr., H. Wollnik, G.W. Butler, F.K. Wohn and A.H. Wapstra, Phys. Rev. Lett. 57 (1986) 3253

- 86VO10 K.F. von Reden, W.W. Daehnick, S.A. Dytman, R.D. Rosa, J.D. Brown, C.C. Foster, W.W. Jacobs and J.R.Comfort, Phys. Rev. C34 (1986) 375
- 86VO12 G. Vourvopoulos, C.F. Maguire, Z. Kui, LC. Dennis, K.W. Kemper and D.P. Sanderson, Phys. Rev. C34 (1986) 2180
- 86YA12 T. Yamaya, J.I. Hirota, K. Takimoto, S. Shimoura, A. Sakaguchi, S. Kubono, M. Sugitani, S. Kato, T. Suehiro and M. Fukada, Phys. Rev. C34 (1986) 2369
- 87AB03 H. Abele, H.J. Hauser, A. Korber, W. Leitner, R. Neu, H. Plappert, T. Rohwer, G. Staudt, M. Strasser, S. Welte et al, Z. Phys. A326 (1987) 373
- 87AD04 S. Adachi and H. V. Von Geramb, Nucl. Phys. A470 (1987) 461
- 87AJ02 F. Ajzenberg-Selove, Nucl. Phys. A475 (1987) 1
- 87AN1A R. Anne, D. Bazin, A.C. Mueller, J.C. Jacmart and M. Langevin, Nucl. Instrum. Methods Phys. Res. A257 (1987) 215
- 87AS05 H.J. Assenbaum, K. Langanke and C. Rolfs, Z. Phys. A327 (1987) 461
- 87BE1F B. Berthier, R. Boisgard, J. Julien, J.M. Hisleur, R. Lucas, C. Mazur, C. Ngô, M. Ribrag and C. Cerruti, Phys. Lett. B193 (1987) 417
- 87BE1H B. Bézard, J.P. Baluteau, A. Marten and N. Coron, Icarus 72 (1987) 623
- M. Bedjidian, D. Contardo, E. Descroix, S. Gardien, J.Y. Grossiord, A. Guichard, M. Gusakow,
 R. Haroutunian, M. Jacquin, J.R. Pizzi et al, Z. Phys. A327 (1987) 337
- 87BH1A K. Bharuth-Ram, S. Connell, J.P.F. Sellschop, M.C. Stemmet, H. Appel and G.M. Then, Hyperfine Interactions 34 (1987) 189
- 87BL18 R. Blumel and K. Dietrich, Nucl. Phys. A471 (1987) 453
- 87BO16 N. Bordes, G. Blondiaux, C.J. Maggiore, M. Valladon, J.L. Debrun, R. Coquille and M. Gauneau, Nucl. Instrum. Methods Phys. Res. B24-25 (1987) 722
- 87BR30 B.A. Brown and B.H. Wildenthal, Nucl. Phys. A474 (1987) 290
- 87BU07 M. Bürgel, H. Fuchs, H. Homeyer, G. Ingold, U. Jahnke and G. Thoma, Phys. Rev. C36 (1987)
 90
- 87BU12 L. Buchmann, J.M. D'Auria, J.D. King, G. Mackenzie, H. Schneider, R.B. Moore and C. Rolfs, Nucl. Instrum. Methods Phys. Res. B26 (1987) 151
- 87BU1E N.T. Burtebaev, A.D. Duisebaev, V.S. Sadkovskii and G.A. Feofilov, Izv. Akad. Nauk SSSR Ser. Fiz. 51 (1987) 615; Bull. Acad. Sci. USSR 51:3 (1987) 191
- 87CH14 S. Chakravarti, D. Dehnhard, M.A. Franey, S.J. Seestrom-Morris, D.B. Holtkamp, C.L. Blilie, A.C. Hayes, C.L. Morris and D.J. Millener, Phys. Rev. C35 (1987) 2197
- 87CH1J W.H. Chung, Singapore J. Phys. 4 (1987) 15
- 87CO07 J. Cook, Nucl. Phys. A465 (1987) 207
- 87CO31 P.D. Cottle and K.W. Kemper, Phys. Rev. C36 (1987) 2034
- 87DJ01 C. Djalali, G.M. Crawley, B.A. Brown, V. Rotberg, G. Caskey, A. Galonsky, N. Marty, M. Morlet and A. Willis, Phys. Rev. C35 (1987) 1201
- 87DO10 A.J.H. Donne, L. Lapikás, A.G.M. Van Hees and D. Zwarts, Nucl. Phys. A469 (1987) 518
- 87DUZU J.P. Dufour, R. Del Moral, F. Hubert, D. Jean, M.S. Pravikoff, A. Fleury, H. Delagrange, A. Mueller, K.-H. Schmidt, E. Hanelt et al, Contrib. Proc. 5th Int. Conf. Nuclei far from Stability, Rosseau Lake, Canada, (1987) D1
- 87DW1A R. Dwyer and P. Meyer, Astrophys. J. 322 (1987) 981
- 87EL03 K. Elsener, W. Gruebler, V. Konig, P.A. Schmelzbach, J. Ulbricht, B. Vuaridel, D. Singy, C. Forstner and W.Z. Zhang, Nucl. Phys. A461 (1987) 579
- B.A. England, L. Zybert, G.T.A. Squier, O. Karban, R. Zybert, J.M. Nelson, D. Barker, B.R.
 Fulton, M.C. Mannion, C.A. Ogilvie et al, Nucl. Phys. A475 (1987) 422

- 87ER05 T. Erikson, K.F. Quader, G.E. Brown and H.T. Fortune, Nucl. Phys. A465 (1987) 123
- 87FA1C A.J. Fahey, J.N. Goswami, K.D. McKeegan and E.K. Zinner, Astrophys. J. 323 (1987) L91
- M.A.G. Fernandes, F.E. Bertrand, R.L. Auble, R.O. Sayer, B.L. Burks, D.J. Horen, E.E. Gross,
 J.L. Blankenship, D. Shapira and M. Beckerman, Phys. Rev. C36 (1987) 108
- 87FO03 H.T. Fortune, Phys. Rev. C35 (1987) 1141
- 87FR1F M. Frank, F. Gubitz, W. Kreische, A. Labahn, C. Ott, B. Röseler, F. Schwab and G. Weeske, Hyperfine Interactions 34 (1987) 193
- 87GA15 M. Gai, R. Keddy, D.A. Bromley, J.W. Olness and E.K. Warburton, Phys. Rev. C36 (1987) 1256
- 87GA1G M. Gai, Z. Zhao and B.A. Brown, Bull. Am. Phys. Soc. 32 (1987) 1579
- 87GI05 A. Gillebert, W. Mittig, L. Bianchi, A. Cunsolo, B. Fernandez, A. Foti, J. Gastebois, C. Grégoire, Y. Schutz and C. Stephan, Phys. Lett. B192 (1987) 39
- 87GI1C W.R. Gibbs and B.F. Gibson, Ann. Rev. Nucl. Part. Sci. 37 (1987) 411
- 87GO1G J. Görres, M. Wiescher, U. Giesen, H.W. Becker, C. Rolfs and H.P. Trautvetter, Bull. Am. Phys. Soc. 32 (1987) 1062
- 87GO1V C.D. Goodman, Can. J. Phys. 65 (1987) 549
- 87GR16 J.M. Greben, Phys. Lett. B192 (1987) 287
- 87GR11 A.M. Green and J.A. Niskanen, Prog. Part. Nucl. Phys. 18 (1987) 93
- 87GR20 A.M. Green and S. Wycech, Nucl. Phys. A467 (1987) 744
- 87GU1D Gulkarov and Mansurov, 37th Meeting on Nuclear Spectroscopy and the Structure of the At. Nucl., Jurmala, USSR, 14-17 April 1987 (Nauka, 1987) 516
- 87GU1K D. Guillemaud-Mueller, Dubna (1987) 350
- 87HA1J P. Haapakoski, Mod. Phys. Lett. A2 (1987) 359
- 87HE1H T.K. Hemmick, D. Elmore, P.W. Kubik, S.L. Olsen, T. Gentile, D. Nitz, D. Ciampa, H. Kagan,
 P. Haas, P.F. Smith et al, Nucl. Instrum. Methods Phys. Res. B29 (1987) 389
- B. Hilscher, H. Rossner, A. Gamp, U. Jahnke, B. Cheynis, B. Chambon, D. Drain, C. Pastor,
 A. Giorni, C. Morand et al, Phys. Rev. C36 (1987) 208
- 87HI1B R.D. Hichwa, E.A. Hugel, J.J. Moska and R.R. Raylman, Nucl. Instrum. Methods Phys. Res. B24-25 (1987) 932
- 87HO18 D.J. Horen, M.A.G. Fernandes, G.R. Satchler, B.L. Burks, R.L. Auble, F.E. Bertrand, E.E. Gross, D.C. Hensley, R.O. Sayer and D. Shapira, Z. Phys. A328 (1987) 189
- 87JU07 J.W. Jury, P.C.-K. Kuo, K.G. McNeill, C.K. Ross, H.R. Weller and S. Raman, Phys. Rev. C36 (1987) 1243
- 87KA39 T. Karapiperis and M. Kobayashi, Ann. Phys. 177 (1987) 1
- 87KN01 M. Knopp, K.-H. Speidel, F. Hagelberg, H.-J. Simonis, P.N. Tandon and J. Gerber, Z. Phys. D4 (1987) 329
- 87LE15 W. Leitner and H. Müther, Nucl. Phys. A469 (1987) 61
- 87LE1B F. Lenz, Prog. Theor. Phys. Suppl. 91 (1987) 27
- 87LE1L B.-K. Lee, M.-H. Cha and S.-K. Nam, New. Phys. (S. Korea) 27 (1987) 405
- 87L11F X.-Y. Li, S.-H. Yao and Q.-Y. Zhang, High Energy Phys. Nucl. Phys. 11 (1987) 397
- 87LY04 W.G. Lynch, Nucl. Phys. A471 (1987) 309c
- 87MA22 E. Maglione, G. Poullarolo, A. Vitturi, R.A. Broglia and A. Winther, Phys. Lett. B191 (1987) 237
- 87MA31 P.V. Magnus, M.S. Smith, P.D. Parker, R.E. Azuma, C. Campbell, J.D. King and J. Vise, Nucl. Phys. A470 (1987) 206

- 87MA40 D.M. Manley and J.J. Kelly, Phys. Rev. C36 (1987) 1646
- 87MC1A K.D. McKeegan, Science 237 (1987) 1468
- 87ME12 O. Meirav, E. Friedman, A. Altmann, M. Hanna, R.R. Johnson and D.R. Gill, Phys. Rev. C36 (1987) 1066
- 87MI1C A. Middleton, J.D. Brown, L. Herold, K.E. Luther, M.L. Pitt, D. Barker, H.S. Camarda and S. Aziz, Bull. Am. Phys. Soc. 32 (1987) 1578
- 87MI25 D.J. Millener, Phys. Rev. C36 (1987) 1643
- 87MI27 W. Mittig, J.M. Chouvel, W.L. Zhan, L. Bianchi, A. Cunsolo, B. Fernandez, A. Foti, J. Gastebois, A. Gillibert, C. Gregoire et al, Phys. Rev. Lett. 59 (1987) 1889
- 87MO27 M.H. Cha, J.Y. Park and W. Scheid, Phys. Rev. C36 (1987) 2341
- 87MU16 H. Müther, R. Machleidt and R. Brockmann, Phys. Lett. B198 (1987) 45
- Nguyen Van Sen, Ye Yanlin, J. Arvieux, G. Gaillard, B. Bonin, A. Boudard, G. Bruge, J.C.
 Lugol, T. Hasegawa, F. Soga et al, Nucl. Phys. A464 (1987) 717
- 87PA07 S.A. Page, H.C. Evans, G.T. Ewan, S.-P. Kwan, J.R. Leslie, J.D. MacArthur, W. McLatchie,
 P. Skensved, S.-S. Wang, H.-B. Mak et al, Phys. Rev. C35 (1987) 1119
- 87PA12 S.J. Padalino, K. Sartor, L.C. Dennis and K.W. Kemper, Phys. Rev. C35 (1987) 1692
- 87PA1D M. Paul, D. Fink and G. Hollos, Nucl. Instrum. Methods Phys. Res. B29 (1987) 393
- 87PA1H B. Parker, K. Seth and R. Soundranayagam, In Panic (1987) 356
- 87PO01 A. Poves and J. Retamosa, Phys. Lett. B184 (1987) 311
- 87PO11 V. Pönisch and S.E. Koonin, Phys. Rev. C36 (1987) 633
- 87RA01 S. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor, Jr. and P.H. Stelson, At. Data Nucl. Data Tables 36 (1987) 1
- 87RA1D R. Ramaty and R.J. Murphy, Space Sci. Rev. 45 (1987) 213
- 87RA28 M. Rajasekaran, N. Arunachalam and V. Devanathan, Phys. Rev. C36 (1987) 1860
- 87RA36 M. Rahman, H.M. Sen Gupta, Md.A. Rahman and A.B. Siddique, Nuovo Cim A98 (1987) 513
- 87RI03 J. Richert and P. Wagner, Nucl. Phys. A466 (1987) 132
- 87SA15 H. Sagawa and H. Toki, J. Phys. G13 (1987) 453
- M.G. Saint-Laurent, J.P. Dufour, R. Anne, D. Bazin, V. Borrel, H. Delagrange, C. Détraz, D.
 Guillemaud-Mueller, F. Hubert, J.C. Jacmart et al, Phys. Rev. Lett. 59 (1987) 33
- 87SA25 M.G. Saint-Laurent, Nucl. Instrum. Methods Phys. Res. B26 (1987) 273
- 87SC11 L. Schmieder, D. Hilscher, H. Rossner, U. Jahnke, M. Lehmann, K. Ziegler and H.-H. Knitter, Nucl. Instrum. Methods Phys. Res. A256 (1987) 457
- 87SC34 A. Scalia, Nuovo Cim. A98 (1987) 571
- 87SE1D J.P.F. Sellschop, Nucl. Instrum. Methods. Phys. Res. B29 (1987) 439
- 87SH10 H.-Q. Song, Z. Wang, Y. Cai and W. Huang, Chin. Phys. 7 (1987) 471
- 87SH23 W. Shen, Y. Zhu, W. Zhan, Z. Guo, S. Yin, W. Qiao and X. Yu, Nucl. Phys. A472 (1987) 358
- 87SN1A K. Sneppen, Nucl. Phys. A470 (1987) 213
- 87SO1E C.P. Sonett, G.E. Morfill and J.R. Jokipii, Nature 330 (1987) 458
- 87TA07 Y. Tagishi, Y. Aoki, M. Kurokawa, T. Murayama, T. Sakai, M. Takei, M. Tomizawa and K. Yagi, Phys. Rev. C35 (1987) 1153
- T.N. Taddeucci, C.A. Goulding, T.A. Carey, R.C. Byrd, C.D. Goodman, C. Gaarde, J. Larsen,
 D. Horen, J. Rapaport and E. Sugarbaker, Nucl. Phys. A469 (1993) 125
- 87TA21 M. Tanaka, T. Yamagata, S. Nakayama, M. Inoue, Y. Sakuragi, M. Kamimura, K. Goto, K. Katori, M. Yanagi and H. Ogata, Phys. Rev. C36 (1987) 2146
- 87TI07 D.R. Tilley, H.R. Weller and H.H. Hasan, Nucl. Phys. A474 (1987) 1

- 87VA19 S.P. Van Verst, K.W. Kemper and J.A. Carr, Phys. Rev. C36 (1987) 628
- 87VA11 Valiev et al, 37th Meeting on Nuclear Spectroscopy and the Structure of the At. Nucl., Jurmala, USSR, 14-17 April 1987 (Nauka, 1987) 346
- 87VA28 G.S. Valiev, I.R. Gulamov, Yu.I. Denisov, T. Iskhakov, A.M. Mukhamedzhanov, G.K. Ni, E.A. Romanovskii, V.A. Stepanenko and R.Ya. Yarmukhamedov, Izv. Akad. Nauk. SSSR Ser. Fiz. 51 (1987) 964
- 87VD1A A.I. Vdovin, A.V. Golovin and I.I. Loschakov, Sov. J. Part. Nucl. 18 (1987) 573
- 87VO1B T. von Egidy, Nature 328 (1987) 773
- 87WA1F P.G. Wannier and R. Sahai, Astrophys. J. 319 (1987) 367
- 87WI11 M. Wiescher, V. Harms, J. Gorres, F.-K. Theilemann and L.J. Rybarcyk, Astrophys. J. 316 (1987) 162
- 87YA1E A.I. Yavin, Can. J. Phys. 65 (1987) 647
- 87YI1A S.-Z. Yin, Y.-T. Zhu, W.-Q. Shen, Z.-Y. Guo, W.-L. Zhan, W.-M. Qiao, E.-C. Wu and Z.-H. Zheng, Phys. Energ. Fortis and Phys. Nucl. 11 (1987) 259
- 87ZH13 Z. Zhu and X. Zhao, Chin. J. Nucl. Phys. 9 (1987) 333
- 87ZH1F Z. Zhao, M. Gai, B.J. Lund, S.M. Rugari, D. Mikolas, B.A. Brown, J.A. Nolen, Jr. and M. Samuel, Bull. Am. Phys. Soc. 32 (1987) 1579
- 87ZU1A H.-C. zur Loye, K.J. Leary, S.W. Keller, W.K. Ham, T.A. Faltens, J.N. Micheals and A.M. Stacy, Science 238 (1987) 1558
- 88AJ01 F. Ajzenberg-Selove, Nucl. Phys. A490 (1988) 1
- 88AL1K M.M. Al-Kofahi, A.B. Hallak, H.A. Al-Juwair and A.K. Saafin, Bull. Am. Phys. Soc. 33 (1988) 1730
- 88AP1A J.H. Applegate, Phys. Rep. 163 (1988) 141
- 88AR1I A. Arima, Hyperfine Interactions 43 (1988) 47
- 88BA82 H. Bando, Nucl. Phys. A478 (1988) 697C
- 88BA83 S. Banik, Ind. J. Pure Appl. Phys. 26 (1987) 387
- 88BE1B J. Beer, U. Siegenthaler, G. Bonani, R.C. Finkel, H. Oeschger, M. Suter and W. Wölfli, Nature 331 (1988) 675
- B.L. Berman, "Energy In Physics, War, and Peace", A Festschrift Celebrating E. Teller's 80th
 Birthday, Ed. Hans Mark and Lowell Wood (Kluwer Academic Publ., Norwell, MA 1988) 49
- 88BE1W M. Beckerman, Rep. Prog. Phys. 51 (1988) 1047
- 88BE56 A.V. Belozerov, K.C. Borcea, J. Wincour, M. Lewitowicz, N.H. Chau, Yu.E. Penionzhkevich, N.K. Skobelev and A. Chasha, Izv. Akad. Nauk SSSR 52 (1988) 2171
- 88BI07 M. Bini, T.F. Fazzini, G. Poggi and N. Taccetti, Phys. Rev. C38 (1988) 1195
- 88BL11 R. Blendowske and H. Walliser, Phys. Rev. Lett. 61 (1988) 1930
- 88BR11 B.A. Brown, W.A. Richter, R.E. Julies and B.H. Wildenthal, Ann. Phys. 182 (1988) 191
- 88BR1D B.A. Brown and B.H. Wildenthal, MSUCL-637 (1988)
- 88BR1P B.A. Brown and B.H. Wildenthal, Ann. Rev. Nucl. Part. Soc. 38 (1988) 29
- 88BRZY J.D. Brown, A. Middleton and S.M. Aziz, Bull. Am. Phys. Soc. 33 (1988) 1022
- 88BU01 L. Buchman, J.M. D'Auria and P. McCorquodale, Astrophys. J. 324 (1988) 953
- B.L. Burks, M.A.G. Fernandes, G.R. Satchler, D.J. Horen, F.E. Bertrand, J.L. Blankenship,
 J.L.C. Ford, Jr., E.E. Gross, D.C. Hensley, R.O. Sayer et al, Phys. Rev. C38 (1988) 1680
- 88CA1G G. Cardella, M. Papa, G. Pappalardo, F. Rizzo, A. De Rosa, G. Inglima, M. Sandoli, G. Fortuna, G. Montagnoli, A.M. Stefanini et al, Nucl. Phys. A482 (1988) 235c
- 88CA1N G.R. Caughlan and W.A. Fowler, At. Data Nucl. Data Tables 40 (1988) 283

- 88CO15 E. Comay, I. Kelson and A. Zidon, Phys. Lett. B210 (1988) 31
- 88CR1B Crawley et al, IPNO-ORE 88.21 (1988)
- 88DE31 R. de Swiniarski and D.L. Pham, Nuovo Cim. A99 (1988) 117
- 88DE37 P. Descouvemont, Phys. Rev. C38 (1988) 2397
- 88DI02 S.S. Dietrich and B.L. Berman, At. Data Nucl. Data Tables 38 (1988) 199
- 88DI08 J. Ding and G. He, J. Phys. G14 (1988) 1315
- 88DO07 G. Doukellis, Phys. Rev. C37 (1988) 2233
- 88DU1C J.P. Dufour, R. Del Moral, F. Hubert, D. Jean, M.S. Pravikoff, A. Fleury, H. Delagrange, A.C. Mueller, K.-H. Schmidt, E. Hanelt et al, AIP Conf. Proc. 164 (1988) 344
- 88EL1B J.P. Elliott, Interactions and Structures in Nuclei, Proc. in Honor of D.H. Wilkinson, Sussex, 9/87, A. Hilger Publ. (1988) 1
- 88ET01 M.C. Etchegoyen, A. Etchegoyen, B.H. Wildenthal, B.A. Brown and J. Keinonen, Phys. Rev. C38 (1988) 1382
- 88FA1A G. Faure, J. Hoefs, L.M. Jones, J.B. Curtis and D.E. Pride, Nature 332 (1988) 352
- 88FI01 J. Fiase, A. Hamoudi, J.M. Irvine and F. Yazici, J. Phys. G14 (1988) 27
- 88FI1C H.J. Fischbeck, Bull. Am. Phys. Soc. 33 (1988) 1691
- 88FU02 C. Funck and K. Langanke, Nucl. Phys. A480 (1988) 188
- 88GA10 E. Gadioli and P.E. Hodgson, Rep. Prog. Phys. 52 (1989) 247
- 88GO1E Goncharov, Romanovsky and Timofeyok, 38th Meeting on Nucl. Spectroscopy and the Structure of the At. Nucl., Baku, USSR, 12-14 April 1988 (Nauka, 1988) 349
- 88GU03 I.S. Gul'karov, M.M. Mansurov and A.A. Khomich, Sov. J. Nucl. Phys. 47 (1988) 25
- 88GU12 I.S. Gul'karov, Sov. J. Part. Nucl. 19 (1988) 149
- BagulA D. Guillemaud-Mueller, R. Anne, D. Bazin, C. Détraz, J. Galin, D. Guerreau, A.C. Mueller,
 E. Roeckl, M.G. Saint-Laurent, M. Bernas et al, AIP Conf. Proc. 164 (1988) 757
- 88GU1B Gulkarov, 38th Meeting on Nucl. Spectroscopy and the Structure of the At. Nucl., Baku, USSR, 12-14 April 1988 (Nauka, 1988) 169
- 88HA1T W.C. Haxton and S.E. Woosley, Bull. Am. Phys. Soc. 33 (1988) 1566
- 88HA22 W.C. Haxton, Phys. Rev. C37 (1988) 2660
- 88HAZZ A.C. Hayes, P.J. Ellis and D.J. Millener, Bull. Am. Phys. Soc. 33 (1988) 929
- 88HE03 S.K.B. Hesmondhalgh, E.F. Garman and K.W. Allen, Nucl. Phys. A476 (1988) 375
- 88HE1C E.M. Henley, Interactions and Structures in Nuclei, Proc. in Honor of D.H. Wilkinson, Sussex, 9/87, A. Hilger Publ. (1988) 151
- 88HE1E E.M. Henley, Prog. Part. Nucl. Phys. 20 (1988) 387
- 88HE1G E.M. Henley, Can. J. Phys. 66 (1988) 554
- 88HI05 M. Hino, K. Muto and T. Oda, Phys. Rev. C37 (1988) 1328
- 88HI1F R.D. Hichwa, Bull. Am. Phys. Soc. 33 (1988) 1747
- 88HI1G D.G. Hinks, D.R. Richards, B. Dabrowski, D.T. Marx and A.W. Mitchell, Nature 335 (1988) 419
- 88HU1E R. Hutchison, C.M.O. Alexander and D.J. Barber, Phil. Trans. Roy. Soc. London A325 (1988) 445
- 88IS02 Y. Iseri, H. Kameyama, M. Kamimura, M. Yahiro and M. Tanifuji, Nucl. Phys. A490 (1988) 383
- 88JO1B G. A. Jones, Interactions and Structures in Nuclei, Proc. in honor of D.H. Wilkinson, Sussex,
 9/87; Adam Hilger Publ. (1988) 9
- 88KA1U N. Kaiser and U.-G. Meissner, Nucl. Phys. A489 (1988) 671

- 88KA39 Sh.S. Kayumov, A.M. Mukhamedzhanov and R. Yarmukhamedov, Sov. J. Nucl. Phys. 48 (1988) 268
- 88KE01 J.J. Kelly, Phys. Rev. C37 (1988) 520
- 88KH06 H.A. Khan, J. Phys. G14 (1988) 701
- 88KO18 L. Koester, W. Waschkowski, J. Meier, G. Rau and M. Salehi, Z. Phys. A330 (1988) 387
- 88KO25 P.E. Koehler and H.A. O'Brien, Phys. Rev. C38 (1988) 2019
- 88KR11 L. Kraus, A. Boucenna, I. Linck, B. Lott, R. Rebmeister, N. Schulz, J.C. Sens, M.C. Mermaz,
 B. Berthier, R. Lucas et al, Phys. Rev. C37 (1988) 2529
- 88KU17 R. Kuchta, Phys. Rev. C38 (1988) 1460
- 88LE05 G. Lévai and J. Cseh, J. Phys. G14 (1988) 467
- 88LI10 Y. Li, High Energy Phys. Nucl. Phys. 12 (1988) 501; Phys. Abs. 5798
- 88MA07 J.F. Mateja, G.L. Gentry, N.R. Fletcher, L.C. Dennis and A.D. Frawley, Phys. Rev. C37 (1988) 1004
- 88MA1Q L. Majling, J. Zofka, T. Sakuda and H. Bando, Prog. Theor. Phys. 79 (1988) 561
- 88MA1U R.A. Malaney and W.A. Fowler, Astrophys. J. 333 (1988) 14
- 88MA53 G. Mairle, K.T. Knöpfle and M. Seeger, Nucl. Phys. A490 (1988) 371
- 88MCZT V. McLane, C.L. Dunford and P.F. Rose, Neutron Cross Sections, Vol. 2 (Academic Press, Inc. 1988)
- 88ME10 M.C. Mermaz, Rev. Roum. Phys. 33 (1988) 739
- 88MI1B A.C. Mix and N.G. Pisias, Nature 331 (1988) 249
- 88MI1G D. Mikolas, B.A. Brown, W. Benenson, Y. Chen, M.S. Curtin, L.H. Harwood, E. Kashy, J.A. Nolen, Jr., M. Samuel, B. Sherrill et al, AIP Conf. Proc. 164 (1988) 708
- 88MI1J D.J. Millener, AIP Conf. Proc. 163 (1988) 402
- A.C. Mueller, D. Bazin, W.D. Schmidt-Ott, R. Anne, D. Guerreau, D. Guillemaud-Mueller,
 M.G. Saint-Laurent, V. Borrel, J.D. Jacmart, F. Pougheon et al, Z. Phys. A330 (1988) 63
- A. Nadasen, M. McMaster, G. Gunderson, A. Judd, S. Villanueva, P. Schwandt, J.S. Winfield,
 J. van der Plicht, R.E. Warner, F.D. Becchetti et al, Phys. Rev. C37 (1988) 132
- 88NW1A S.N. Nwosu, D.E. Menzie and H.J. Fischbeck, Bull. Am. Phys. Soc. 33 (1988) 1735
- 88PO1E N.A.F.M. Poppelier, J.H. de Vries, A.A. Wolters and P.W.M. Glaudemans, AIP Conf. Proc. 164 (1988) 334
- 88PR1C P.B. Price, G. Ren and W.T. Williams, Bull. Am. Phys. Soc. 33 (1988) 1591
- 88SA04 M. Samuel, B.A. Brown, D. Mikolas, J. Nolen, B. Sherrill, J. Stevenson, J.S. Winfield and Z.Q. Xie, Phys. Rev. C37 (1988) 1314
- 88SA10 Y. Sakuragi, M. Yahiro, M. Kamimura and M. Tanifuji, Nucl. Phys. A480 (1988) 361
- 88SA12 N.V. Samsonenko, A.L. Samgin and Ch.L. Katkhat, Sov. J. Nucl. Phys. 47 (1988) 220
- S.J. Seestrom-Morris, D. Dehnhard, M.A. Franey, D.B. Holtkamp, C.L. Blilie, C.L. Morris,
 J.D. Zumbro and H.T. Fortune, Phys. Rev. C37 (1988) 2057
- 88SE11 N. Severijns, J. Wouters, J. Vanhaverbeke, W. Vanderpoorten and L. Vanneste, Hyperfine Interact. 34 (1988) 415
- 88SE1A K.K. Seth, Nucl. Phys. A478 (1988) 591C
- 88SH03 B. Shivakumar, D. Shapira, P.H. Stelson, S. Ayik, B.A. Harmon, K. Teh and D.A. Bromley, Phys. Rev. C37 (1988) 652
- 88SM01 M.J. Smithson, D.L. Watson and H.T. Fortune, Phys. Rev. C37 (1988) 1036
- 88TA08 M. Tanaka, T. Yamagata, S. Nakayama, M. Inoue, K. Goto, K. Katori, M. Yanagi and H. Ogata, Nucl. Instrum. Methods Phys. Res. A267 (1988) 139

- T. Tachikawa, N. Kato, H. Fujita, K. Anai, H. Inoue, T. Sugimitsu, K. Kimura, Y. Nakajima,
 K. Morita, S. Kubono et al, Nucl. Phys. A484 (1988) 125
- 88TR02 M. Trajdos and K. Zajac, J. Phys. G14 (1988) 869
- 88TR1C J.W. Truran, AIP Conf. Proc. 16 (1988) 543
- 88UM1A K. Umezawa, T. Kurio, J. Yamane, F. Shoji, K. Oura, T. Hanawa and S. Yano, Nucl. Instrum. Methods Phys. Res. B33 (1988) 634
- 88UT02 H. Utsunomiya and R.P. Schmitt, Nucl. Phys. A487 (1988) 162
- 88VAZY S.P. Van Verst, K.W. Kemper, D.E. Trcka, G.A. Hall, V. Hnizdo, K.R. Chapman and B.G. Schmidt, Bull. Am. Phys. Soc. 33 (1988) 1101
- 88VO1D J.R. Votaw, Bull. Am. Phys. Soc. 33 (1988) 1748
- 88VO1E J.R. Votaw and R.J. Nickles, Bull. Am. Phys. Soc. 33 (1988) 1738
- 88WA17 E.K. Warburton, Phys. Rev. C38 (1988) 935
- 88WI08 M. Wiescher, J. Görres and F.-K. Thielemann, Astrophys. J. 326 (1988) 384
- 88WO09 J.M. Wouters, R.H. Kraus, Jr., D.J. Vieira, G.W. Butler and K.E.G. Löbner, Z. Phys. A331 (1988) 229
- 88WO1C S.E. Woosley and W.C. Haxton, Nature 334 (1988) 45
- 88YU04 Z.-Q. Yu, C.-H. Cai, W.-H. Ma and S.-P. Zhao, Phys. Rev. C38 (1988) 272
- 89AJ1A F. Ajzenberg-Selove, "Heavy Ions In Nucl. and Atomic Physics" (1988 Mikolajki Summer Sch. on Nucl. Phys.); Ed. Wilhelmi and Szeflinska; Adam Hilger Publs. (1989) 1
- 89AN12 I. Angeli, Z. Phys. A334 (1989) 377
- 89AN1D Anjos et al, Sao Paulo (1989) 339
- M. Arnould, F. Baeten, D. Darquennes, Th. Delbar, C. Dom, M. Huyse, Y. Jongen, P. Leleux,
 M. Lacroix, P. Lipnik et al, Nucl. Instrum. Methods Phys. Res. B40-41 (1989) 498
- 89BA1E H. Bando, M. Sano, J. Zoofka and M. Wakai, Nucl. Phys. A501 (1989) 900
- 89BA1R H.W. Baer, Bull. Am. Phys. Soc. 34 (1989) 1210
- 89BA2N H. Bando, Nuovo Cim. A102 (1989) 627
- 89BA2P J.N. Bahcall, Neutrino Astrophys. (Publ. Cambridge Univ. Press 1989)
- 89BE1R Belyanin et al, Proc. 39th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, USSR, 18-21 April 1989 (Nauka, 1989) 360
- 89BEZC J.A. Behr, K.A. Snover, C.A. Gossett, J.H. Gundlach and W. Hering, Bull. Am. Phys. Soc. 34 (1989) 1832
- 89BO01 G. Bogaert, V. Landré, P. Aguer, S. Barhoumi, M. Kious, A. Lefebvre, J.P. Thibaud and D. Bertault, Phys. Rev. C39 (1989) 265
- 89BR14 I.M. Brancus, I. Berceanu, A. Buta, A. Demian, C. Grama, I. Lazar, I. Mihai, M. Petrascu, V. Simion and A. Constantinescu, Z. Phys. A333 (1989) 71
- 89BR1G C. Brechtmann, W. Heinrich and E.V. Benton, Phys. Rev. C39 (1989) 2222
- 89BR1J Brown, Proc. 1989 Intl. Nucl. Phys. Conf., Sao Paulo, Brasil, 20-26 August 1989 (World Scientific, 1989) 187
- 89CA15 S. Cavallaro, S.Z. Yin, G. Prete and G. Viesti, Phys. Rev. C40 (1989) 98
- 89CA25 W.N. Catford, L.K. Fifield, N.A. Orr and C.L. Woods, Nucl. Phys. A503 (1989) 263
- 89CH13 D.C. Choudhury and T. Guo, Phys. Rev. C39 (1989) 1883
- 89CH10 Ching, Ho, Zou and Johnson, Commun. Theor. Phys. 11 (1989) 171
- 89CH1P X. Chen and S. Wu, High Energy Phys. Nucl. Phys. 13 (1989) 50; Phys. Abs. 68985
- 89CH21 H.-C. Chiang and B.-S. Zou, Nucl. Phys. A496 (1989) 739

- 89CI1C N. Cindro and M. Bozin, "Heavy Ions in Nucl. and Atomic Phys." (1988 Mikolajki Summer Schl. on Nucl. Phys.); eds. Wilhelmi and Szeflinska; A. Hilger Publs. (1989) 239
- 89DE1X C. Detraz and D.J. Vieira, Ann. Rev. Nucl. Part. Sci. 39 (1989) 407
- 89DO03 G. Doukellis, Phys. Rev. C39 (1989) 2088
- 89FO02 H.T. Fortune, Phys. Rev. C39 (1989) 192
- 89FR05 P. Fröbrich, Phys. Rev. C39 (1989) 2085
- 89FU01 C. Funck, B. Grund and K. Langanke, Z. Phys. A332 (1989) 109
- 89FU06 C. Funck and K. Langanke, Astrophys. J. 344 (1989) 46
- 89FU08 C. Funck, B. Grund and K. Langanke, Z. Phys. A334 (1989) 1
- 89FU1H C. Funck and K. Langanke, Proc. int. Symp. on Heavy Ion Phys. and Nucl. Astrophys. Problems, Tokyo, 21-23 July 1988, ed. S. Kubono, M. Ishihara, T. Nomura (World Scientific, 1989) 67
- 89GA01 M. Gai, S.L. Rugari, R.H. France, III, B.J. Lund, Z. Zhao, D.A. Bromley, B.A. Lincoln, W.W. Smith, M.J. Zarcone and Q.C. Kessel, Phys. Rev. Lett. 62 (1989) 874
- 89GA06 E.F. Garman, S.K.B. Hesmondhalgh and K.W. Allen, Nucl. Phys. A491 (1989) 383
- 89GA09 C. García-Recio, M.J. López, J. Navarro and F. Roig, Phys. Lett. B222 (1989) 329
- 89GAZW A. Garcia, E.G. Adelberger, D. Markoff and K. Swartz, Bull. Am. Phys. Soc. 34 (1989) 1802
- 89GE10 P.M. Gensini, Nuovo Cim. A102 (1989) 1563
- 89GE1A C.K. Gelbke, Nucl. Phys. A495 (1989) 27C
- 89GR13 K. Grotowski, J. Ilnicki, T. Kozik, J. Lukasik, S. Micel, Z. Sosin, A. Wieloch, N. Heide, H. Jelitto, I. Kiener et al, Phys. Lett. B223 (1989) 287
- 89GR1F M. Gruszczynski, S. Halas, A. Hoffman and K. Malkowski, Nature 337 (1989) 64
- 89GR1M Grion and Rui, Proc. 1989 Intl. Nucl. Phys. Conf., Sao Paulo, Brasil, 20–26 August 1989 (World Scientific, 1989) 22
- 89GU06 I.S. Gul'karov and V.I. Kuprikov, Sov. J. Nucl. Phys. 49 (1989) 21
- B. Guerreau, J.L. Charvet, H. Doubre, J. Galin, G. Ingold, D. Jacquet, U. Jahnke, D.X. Jiang,
 B. Lott, M. Morjean et al, Heavy Ions in Nucl. At. Phys., 1988 Mikolajki Summer School on Nucl. Phys., eds. Z. Wilhelmi and G. Szeflinska (Adam Hilger Publs., 1989) 159
- 89GU1L B. Gustafsson, Ann. Rev. Astron. Astrophys. 27 (1989) 701
- 89GU25 I.P. Gulamov, A.I. Mukhamedzhanov and G.K. NI, Bull. Acad. Sci. USSR 53: 5 (1989) 172;
 Izv. Akad. Nauk SSSR Ser. Fiz 53 (1989) 1004
- 89HA08 H.Y. Han, K.X. Jing, E. Plagnol, D.R. Bowman, R.J. Charity, L. Vinet, G.J. Wozniak and L.G. Moretto, Nucl. Phys. A492 (1989) 138
- 89HA22 W.C. Haxton, E.M. Henley and M.J. Musolf, Phys. Rev. Lett. 63 (1989) 949
- 89HE21 H. Heiselberg, A.S. Jensen, A. Miranda and G.C. Oades, Phys. Scr. 40 (1989) 141
- 89HJ03 M. Hjorth-Jensen and E. Osnes, Phys. Lett. B228 (1989) 281
- 89HO1H R. Hou, X. Zhao and Z. Zhu, Commun. Theor. Phys. 12 (1989) 57
- 89JI1A L. Jin, W.D. Arnett and S.K. Chakrabarti, Astrophys. J. 336 (1989) 572
- 89KA1K Kajino, Mathews and Fuller, Proc. int. Symp. on Heavy Ion Phys. and Nucl. Astrophys. Problems, Tokyo, 21-23 July 1988, ed. S. Kubono, M. Ishihara, T. Nomura (World Scientific, 1989) 51
- 89KA1S Katoh, Kawade and Yamamoto, JAERI-M 89-083 (1989)
- 89KA24 F. Käppeler, H. Beer and K. Wisshak, Rep. Prog. Phys. 52 (1989) 945
- 89KA37 G. Kalbermann, E. Friedman, A. Gal and C.J. Batty, Nucl. Phys. A503 (1989) 632

- 89KAZH A.B. Kabulov, Proc. 39th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, USSR, 18-21 April 1989 (Nauka, 1989) 192
- 89KO16 P.E. Koehler and H.A. O'Brien, Nucl. Instrum. Methods Phys. Res. B40/41 (1989) 494
- 89KU10 P.C.-K. Kuo, J.W. Jury, K.G. McNeill, N.K. Sherman and W.F. Davidson, Nucl. Phys. A499 (1989) 328
- 89KU1P A.G. Kudziev, Nucl. Instrum. Methods Phys. Res. A282 (1989) 267
- 89LA19 V. Landre, P. Aguer, G. Bogaert, A. Lefebvre, J.P. Thibaud, S. Fortier, J.M. Maison and J. Vernotte, Phys. Rev. C40 (1989) 1972
- 89LE16 M. Lewitowicz, Yu.E. Penionzhkevich, A.G. Artukh, A.M. Kalinin, V.V. Kamanin, S.M. Lukyanov, Nguyen Hoai Chau, A.C. Mueller, D. Guillemaud-Mueller, R. Anne et al, Nucl. Phys. A496 (1989) 477
- 89LE1L Leitch, "Fundamental Symmetries and Nucl. Structure", eds. Ginocchio & Rosen, Santa Fe, NM 1988 (World Sci. 1989) 163
- 89MA24 J. Mahalanabis and H.V. Von Geramb, Nucl. Phys. A493 (1989) 412
- 89MA45 Z. Majka, V. Abenante, Z. Li, N.G. Nicolis, D.G. Sarantites, T.M. Semkow, L.G. Sobotka, D.W. Stracener, J.R. Beene, D.C. Hensley et al, Phys. Rev. C40 (1989) 2124
- 89MC1C A.B. McDonald, Can. J. Phys. 67 (1989) 785
- 89ME1C R.A. Mewaldt and E.C. Stone, Astrophys. J. 337 (1989) 959
- 89MO1J R.N. Mohapatra, WEIN 89 (1989) 133
- 89NA1M Nagashima et al, Proc. 1989 Intl. Nucl. Phys. Conf., Sao Paulo, Brasil, 20-26 August 1989 (World Scientific, 1989) 340
- 89NI1D H. Nifenecker and J.A. Pinston, Prog. Part. Nucl. Phys. 23 (1989) 271
- 89NO1A Nomoto, Hashimoto, Arai and Kaminisi, Proc. int. Symp. on Heavy Ion Phys. and Nucl. Astrophys. Problems, Tokyo, 21-23 July 1988, ed. S. Kubono, M. Ishihara, T. Nomura (World Scientific, 1989) 9
- 89NO1C J.W. Norbury, Phys. Rev. C40 (1989) 2621
- 89NW1A S.N. Nwosu and H.J. Fischbeck, Nucl. Instrum. Methods Phys. Res. B40-41 (1989) 833
- 89OG1B A.A. Ogloblin and Y.E. Penionzhkevich, Treatise on Heavy-Ion Science, vol. 8, ed. D.A. Bromley (Plenum Publ. Corp. 1989) 261
- 89OR02 W.E. Ormand and B.A. Brown, Nucl. Phys. A491 (1989) 1
- 89PA06 D.J. Parker, J.J. Hogan and J. Asher, Phys. Rev. C39 (1989) 2256
- 89PLZV A.V. Plavko and M.S. Onegin, Proc. 39th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, USSR, 18-21 April 1989 (Nauka, 1989) 288
- 89PO1K Poppelier, Ph.D. Thesis, Univ. of Utrecht (1989)
- 89PR01 D.M. Pringle and W.J. Vermeer, Nucl. Phys. A499 (1989) 117
- 89RA16 S. Raman, C.W. Nestor, Jr. , S. Kahane and K.H. Bhatt, At. Data Nucl. Data Tables 42 (1989) 1
- 89RA17 P. Raghavan, At. Data Nucl. Data Tables 42 (1989) 189
- 89RA1G J. Rapaport, Fundamental Symmetries and Nucl. Structure, eds. J.N. Ginocchio & S. P. Rosen, Santa Fe, NM, 1988 (World Sci. 1989) 186
- M.G. Saint-Laurent, R. Anne, D. Bazin, D. Guillemaud-Mueller, U. Jahnke, Jin Gen-Ming,
 A.C. Mueller, J.F. Bruandet, F. Glasser, S. Kox et al, Z. Phys. A332 (1989) 457
- 89SA1H N.V. Samsonenko, C.L. Kathat and A.L. Samgin, Nucl. Phys. A491 (1989) 642
- 89SA1P Sakutal, Proc. 39th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, USSR, 18-21 April 1989 (Nauka, 1989) 380

- 89SA55 N.V. Samsonenko, A.L. Samgin, M.I. Suvorov and E.V. Brilev, Izv. Akad. Nauk SSSR Ser. Fiz.
 53 (1989) 2110; Bull. Acad. Sci. USSR Phys. Ser. 53 (1989) 47
- 89SP01 R.H. Spear, At. Data Nucl. Data Tables 42 (1989) 55
- 89ST1H Strottman, "Fundamental Symmetries and Nucl. Structure", eds. Ginocchio & Rosen, Santa Fe, NM 1988 (World Sci. 1989) 247
- 89TA1N C. Tan, Y. Xia, H. Yang, X. Sun, J. Liu, Z. Zheng and P. Zhu, Nucl. Instrum. Methods Phys. Res. B42 (1989) 1
- 89TA10 I. Tanihata, Treatise on Heavy-Ion Science, Vol. 8, Ed. D.A. Bromley (Plenum Publ. Corp 1989) 443
- 89TA1T Y. Tanaka, Phys. Lett. B227 (1989) 195
- 89TA1Y N. Tanaka, K. Hosoya, K. Nomura, T. Yoshimura, T. Ohki, R. Yamaoka, K. Kimata and M. Araki, Nature 341 (1989) 727
- 89TE02 F. Terrasi, A. Brondi, G. La Rana, G. De Angelis, A. D'Onofrio, R. Moro, E. Perillo and M. Romano, Phys. Rev. C40 (1989) 742
- 89TH1C Thielemann and Wiescher, Proc. Int. Symp. on Heavy Ion Phys. and Nucl. Astrophys. Problems, Tokyo, 21-23 July 1988, ed. S. Kubono, M. Ishihara, T. Nomura (World Scientific, 1989) 27
- 89TR18 M. Traidos and K. Zaionts, Izv. Akad. Nauk SSSR 53 (1989) 2225
- 89VA04 S.P. Van Verst, D.P. Sanderson, D.E. Trcka, K.W. Kemper, V. Hnizdo, B.G. Schmidt and K.R. Chapman, Phys. Rev. C39 (1989) 853
- 89VAZM G.S. Valiev, I.R. Gulamov, T. Iskhakov, A.A. Karakhodzhaev, A.M. Mukhamedzhanov, G.K. Ni and E.A. Pak, Proc. 39th Ann. Conf. Nucl. Spectrosc. Struct. At. Nuclei, Tashkent, USSR, 18-21 April 1989 (Nauka, 1989) 274
- 89VO1F V.V. Volkov, Treatise on Heavy-Ion Science, Vol. 8, Ed. D.A. Bromley, (Plenum Publ. Corp. 1989) 101
- 89WAZZ J.W. Watson, B.D. Anderson, A.R. Baldwin, R. Madey, M.R. Plumley, J. Schambach, P.J. Pella and C.C. Foster, Bull. Am. Phys. Soc. 34 (1989) 1142
- 89WH1B J.C. Wheeler, C. Sneden and J.W. Truran, Jr., Ann. Rev. Astron. Astrophys. 27 (1989) 279
- A.L. Williams, L. Agnew, L.G. Atencio, H.W. Baer, M. Burlein, G.R. Burleson, K.S. Dhuga,
 H.T. Fortune, G.S. Kyle, J.A. McGill et al, Phys. Lett. B216 (1989) 11
- 89WO1B R.W. Wood, Bull. Am. Phys. Soc. 34 (1989) 1133
- 89YO02 A. Yokoyama, T. Saito, H. Baba, K. Hata, Y. Nagame, S. Ichikawa, S. Baba, A. Shinohara and N. Imanishi, Z. Phys. A332 (1989) 71
- W. Yokota, T. Nakagawa, M. Ogihara, T. Komatsubara, Y. Fukuchi, K. Suzuki, W. Galster,
 Y. Nagashima, K. Furuno, S.M. Lee et al, Z. Phys. A333 (1989) 379
- 89YU1A Yu, Cai and Ma, Proc. 1989 Intl. Nucl. Phys. Conf., Sao Paulo, Brasil, 20-26 August 1989 (WorLD SCIentific, 1989) 9
- 89ZH04 Z. Zhao, M. Gai, B.J. Lund, S.L. Rugari, D. Mikolas, B.A. Brown, J.A. Nolen, Jr. and M. Samuel, Phys. Rev. C39 (1989) 1985
- 89ZH05 R.-R. Zheng, K.W. Schmid, F. Grümmer and A. Faessler, Nucl. Phys. A494 (1989) 214
- 89ZHZY X.L. Tu, V.G. Lind, D.J. Vieira, J.M. Wouters, K.E.G. Löbner, Z.Y. Zhou, H.L. Seifert, Bull. Am. Phys. Soc.34 (1989) 1800
- 90AB1G F. Abel, G. Amsel, E. d'Artemare, C. Ortega, J. Siejka and G. Vizkelethy, Nucl. Instrum. Methods Phys. Res. B45 (1990) 100
- 90AJ01 F. Ajzenberg-Selove, Nucl. Phys. A506 (1990) 1
- 90AL40 D.V. Aleksandrov, E.Yu. Nikol'skii and D.N. Stepanov, Yad. Fiz. 52 (1990) 933; Sov. J. Nucl. Phys. 52 (1990) 593

- 90AN14 R.M. Anjos, V. Guimarães, N. Added, N. Carlin Filho, M.M. Coimbra, L. Fante, Jr., M.C.S.
 Figueira, E.M. Szanto, C.F. Tenreiro and A. Szanto de Toledo, Phys. Rev. C42 (1990) 354
- 90AR10 M. Arnould and M. Rayet, Ann. Physique 15 (1990) 183
- 90BA1S E.H. Bakraji, A. Giovagnoli, G. Blondiaux and J.-L. Debrun, Nucl. Instrum. Methods Phys. Res. B50 (1990) 65
- 90BO04 J. Boger, S. Kox, G. Auger, J.M. Alexander, A. Narayanan, M.A. McMahan, D.J. Moses, M. Kaplan and G.P. Gilfoyle, Phys. Rev. C41 (1990) R801
- 90BR13 D.S. Brenner, C. Wesselborg, R.F. Casten, D.D. Warner and J.-Y. Zhang, Phys. Lett. B243 (1990) 1
- 90BR26 B.A. Brown, Phys. Rev. Lett. 65 (1990) 2753
- 90CH12 H.C. Chiang, E. Oset, R.C. Carrasco, J. Nieves and J. Navarro, Nucl. Phys. A510 (1990) 573
- 90CH13 H.C. Chiang, E. Oset and P. Fernández de Córdoba, Nucl. Phys. A510 (1990) 591
- 90CH14 C. Ching, T. Ho and B. Zou, Nucl. Phys. A510 (1990) 630
- 90CH11 R.J. Chater, J.A. Kilner, K.J. Reeson, A.K. Robinson and P.L.F. Hemment, Nucl. Instrum. Methods Phys. Res. B45 (1990) 110
- 90CH1U Ching, Ho and Zou, Int. Conf. on Particles and Nucl., Cambridge, Mass., 25-29 June 1990 (Organizing Committee, 1990) Paper III-77
- 90CO1K D.D. Cohen, S.D. Bradshaw, F.J. Bradshaw and A. Katsaros, Nucl. Instrum. Methods Phys. Res. B50 (1990) 43
- 90DE14 A. De Rosa, E. Fioretto, G. Inglima, M. Romoli, M. Sandoli, R. Setola, G. Cardella, M. Papa,
 G. Pappalardo, F. Rizzo et al, Phys. Rev. C41 (1990) 2062
- 90EN08 P.M. Endt and C. van der Leun, Nucl. Phys. A521 (1990) 1
- 90FO04 S. Fortier, S. Gales, S.M. Austin, W. Benenson, G.M. Crawley, C. Djalali, J.S. Winfield and G. Yoo, Phys. Rev. C41 (1990) 2689
- 90GAZR A. Garcia, E.G. Adelberger, D. Markoff, K. Swartz, M.S. Smith, P.V. Magnus and K.I. Hahn, Bull. Am. Phys. Soc. 35 (1990) 1400
- 90GAZW A. Garcia, E.G. Adelberger, D.K. Swartz, M.S. Smith, P.V. Magnus and K.I. Hahn, Bull. Am. Phys. Soc. 35 (1990) 1074
- 90GL01 A. Glaesner, W. Dünnweber, M. Bantel, W. Hering, D. Konnerth, R. Ritzka, W. Trautmann,
 W. Trombik and W. Zipper, Nucl. Phys. A509 (1990) 331
- 90GU10 I.S. Gul'karov, Sov. J. Nucl. Phys. 51 (1990) 61
- 90HA07 W.C. Haxton, Nucl. Phys. A507 (1990) 179c
- 90HJ01 M. Hjorth-Jensen and E. Osnes, Phys. Scr. 41 (1990) 207
- 90HJ03 M. Hjorth-Jensen, E. Osnes, H. Müther and K.W. Schmid, Phys. Lett. B248 (1990) 243
- 90HUZY W. Huang, C.D. Goodman, G.C. Kiang, Y. Wang, T. Carey, R. Byrd, L. Rybarcyk, T. Taddeucci, D. Marchlenski, E. Sugarbaker et al, Bull. Am. Phys. Soc. 35 (1990) 1059
- 90JO01 T.M. Jørgensen, A.S. Jensen, A. Miranda and G.C. Oades, Nucl. Phys. A506 (1990) 615
- 90KA1F N. Kaiser and U.-G. Meissner, Nucl. Phys. A510 (1990) 759
- 90KOZG F. Komori, S. Katsumoto, S. Kobayashi, S. Ikehata, N. Ikeda, O. Hashimoto, T. Fukuda, T. Nomura and T. Yamazaki, Inst. Nucl. Study, Univ. Tokyo, 1989 Ann. Rept. (1990) 27
- 90KU1H Kume and Nose, Int. Conf. on Particles and Nucl., Cambridge, Mass., 25-29 June 1990 (Organizing Committee, 1990) Paper III-81, 82
- 90LE08 JH. Lee, W. Benenson and D.J. Morrissey, Phys. Rev. C41 (1990) 1562
- 90LI1J D. Lissauer and H. Takai, Phys. Rev. C41 (1990) 2410
- 90LO11 R.J. Lombard, J. Phys. G16 (1990) 1311

- 90MA05 P.V. Magnus, M.S. Smith, A.J. Howard, P.D. Parker and A.E. Champagne, Nucl. Phys. A506 (1990) 332
- 90MA06 D.M. Manley, D.J. Millener, B.L. Berman, W. Bertozzi, T.N. Buti, J.M. Finn, F.W. Hersmann, C.E. Hyde-Wright, M.V. Hynes, J.J. Kelly et al, Phys. Rev. C41 (1990) 448
- 90MA1Z R.A. Malaney, Workshop on Primordial Nucleosynthesis, Chapel Hill, NC, 1989, ed. W.J. Thompson, B.W. Carney, H.J. Karwowski (World Scientific, 1990) 49
- 90MAZW W.-H. Ma, L.S. Kisslinger and S.-W. Wang, Bull. Am. Phys. Soc. 35 (1990) 1017
- 90MI01 H. Miyake and A. Mizukami, Phys. Rev. C41 (1990) 329
- 90MI15 I.V. Mitchell, G.R. Massoumi, W.N. Lennard, S.Y. Tong, P.F.A. Alkemade, K. Griffiths, S.J.
 Bushby and P.R. Norton, Nucl. Instrum. Methods Phys. Res. B45 (1990) 107
- 90MO13 M. Moosburger, E. Aschenauer, H. Dennert, W. Eyrich, A. Lehamnn, R. Rudeloff, H. Schlösser,
 H. Wirth, H.J. Fils, H. Rebel et al, Phys. Rev. C41 (1990) 2925
- 90NA24 S. Nakayama, T. Yamagata, K. Yuasa, M. Tanaka, M. Inoue, T. Itahashi and H. Ogata, Phys. Lett. B246 (1990) 342
- 90NO1A J.W. Norbury, Phys. Rev. C42 (1990) 711
- 90OS03 A. Osman and A.A. Farra, Nuovo Cim. A103 (1990) 1693
- 90PH02 D.L. Pham and R. de Swiniarski, Nuovo Cim. A103 (1990) 375
- 90PI1G Yu.L. Pivovarov, A.A. Shirokov and S.A. Vorobiev, Nucl. Phys. A509 (1990) 800
- 90PO04 I.V. Poplavskii, Yad. Fiz. 51 (1990) 1258; Sov. J. Nucl. Phys. 51 (1990) 799
- 90SA1J A. Sarkar, R. Ramesh, S.K. Bhattacharya and G. Rajagopalan, Nature 343 (1990) 549
- 90SA27 S.K. Saha, W.W. Daehnick, S.A. Dytman, P.C. Li, J.G. Hardie, G.P.A. Berg, C.C. Foster,
 W.P. Jones, D.W. Miller and E.J. Stephenson, Phys. Rev. C42 (1990) 922
- 90SC18 A. Scalia, R. Giordano, S. Sambataro, F. Porto, P. Figuera and S. Pirrone, Nuovo Cim. A103 (1990) 269
- 90SEZZ R.M. Sellers, D.M. Manley, R.A. Lindgren, B.L. Clausen, M. Farkhondeh, B.E. Norum, R.J. Peterson, B.L. Berman and C.E. Hyde-Wright, Bull. Am. Phys. Soc. 35 (1990) 927
- 90SI1D R. Silberberg and C.H. Tsao, Phys. Rev. 191 (1990) 351
- 90SK04 L.D. Skouras and J.C. Varvitsiotis, Nucl. Phys. A513 (1990) 239
- 90SK1C L.D. Skouras and H. Müther, Nucl. Phys. A515 (1990) 93
- 90SN1A K. Snover, Bull. Am. Phys. Soc. 35 (1990) 1032
- 90ST08 A. Staudt, E. Bender, K. Muto and H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 44 (1990) 79
- 90ST1G J. Stutzki and R. Güsten, Astrophys. J. 356 (1990) 513
- 90SZ1C A. Szanto de Toledo, Proc. 1989 Intl. Nucl. Phys. Conf., Sao Paulo, Brasil, 20–26 August 1989 (World Scientific, 1989) 607
- 90TH1C F.-K. Thielemann, M.-A. Hashimoto and K. Nomoto, Astrophys. J. 349 (1990) 222
- 90TH1E F.-K. Thielemann and M. Wiescher, Wksp. on Primordial Nucleosynthesis, Chapel Hill, NC, 1989, ed. Thompson, Carney, Karwowski (World Sci., 1990) 92
- 90TO1F M. Toriseva, L. Bronfman and K. Mattila, Astrophys. Space Sci. 171 (1990) 219
- 90VO06 R.B. Vogelaar, T.R. Wang, S.E. Kellogg and R.W. Kavanagh, Phys. Rev. C42 (1990) 753
- 90WA10 S. Wa-Kitwanga, P. Leleux, P. Lipnik and J. Vanhorenbeeck, Phys. Rev. C42 (1990) 748
- 90WAZT J.W. Watson, M. Rahi, B.D. Anderson, A.R. Baldwin, R. Madey, M.R. Plumley, J. Schambach, P.J. Pella and C.C. Foster, Bull. Am. Phys. Soc. 35 (1990) 1659
- 90WE1A W.R. Webber, J.C. Kish and D.A. Schrier, Phys. Rev. C41 (1990) 520
- 90WE1I W.R. Webber, A. Soutoul, P. Ferrando and M. Gupta, Astrophys. J. 348 (1990) 611

- 90WI1K Williams et al, Int. Conf. on Particles and Nucl., Cambridge, Mass., 25-29 June 1990 (Organizing Committee, 1990) Paper III-68
- 90WIZP M. Wiescher, J. Görres, S. Graff, R.E. Azuma, C.a. Barnes and T.R. Wang, Bull. Am. Phys. Soc. 35 (1990) 1673
- 90XE01 A.C. Xenoulis, A.E. Aravantinos, G.P. Eleftheriades, C.T. Papadopoulos, E.N. Gazis and R. Vlastou, Nucl. Phys. A516 (1990) 108
- 90YE02 S.J. Yennello, K. Kwiatkowski, S. Rose, L.W. Woo, S.H. Zhou and V.E. Viola, Phys. Rev. C41 (1990) 79
- 90ZI04 E.P. Zironi, J. Rickards, A. Maldonado and R. Asomoza, Nucl. Instrum. Methods Phys. Res. B45 (1990) 115
- 90ZS01 H.-E. Zschau, F. Plier, G. Otto, C. Wyrwich and A. Treide, Nucl. Instrum. Methods Phys. Res. B50 (1990) 74
- 91AJ01 F. Ajzenberg-Selove, Nucl. Phys. A523 (1991) 1
- 91BA54 G. Battistig, G. Amsel, E. d'Artemare and I. Vickridge, Nucl. Instrum. Methods Phys. Res. B61 (1991) 369
- 91BA62 E.H. Bakraji, G. Ducouret, G. Blondiaux and J.L. Debrun, Nucl. Instrum. Methods Phys. Res. B56/57 (1991) 819
- 91CI08 A. Cieply, M. Gmitro, R. Mach and S.S. Kamalov, Phys. Rev. C44 (1991) 713
- 91CI11 A. Cieply, M. Gmitro and R. Mach, Czech. J. Phys. B41 (1991) 1091
- 91CR06 S. Croft, Nucl. Instrum. Methods Phys. Res. A307 (1991) 353
- 91FR02 J. Fritze, R. Neu, H. Abele, F. Hoyler, G. Staudt, P.D. Eversheim, F. Hinterberger and H. Müther, Phys. Rev. C43 (1991) 2307
- 91GA03 A. Garcia, E.G. Adelberger, P.V. Magnus, D.M. Markoff, K.B. Swartz, M.S. Smith, K.I. Hahn, N. Bateman and P.D. Parker, Phys. Rev. C43 (1991) 2012
- 91GA08 M. Gai, M. Ruscev, D.A. Bromley and J.W. Olness, Phys. Rev. C43 (1991) 2127
- 91GU05 M. Guillaume, A. Luxen, B. Nebeling, M. Argentini, J.C. Clark and V.W. Pike, Appl. Radiat. Isot. 42 (1991) 749
- 91HA17 C.L. Hartmann and P.M. DeLuca, Jr., Nucl. Sci. Eng. 109 (1991) 319
- 91HE16 H. Herndl, H. Abele, G. Staudt, B. Bach, K. Grün, H. Scsribany, H. Oberhummer and G. Raimann, Phys. Rev. C44 (1991) R952
- 91HI15 K. Hida and S. Iijima, J. Nucl. Sci. Technol. 28 (1991) 447
- 91IG1A M. Igashira, H. Kitazawa, S. Kitamura, H. Anze and M. Horiguchi, AIP Conf. Proc. 238 (1991) 624
- 91KO1P P.E. Koehler and H.A. O'Brien, AIP Conf. Proc. 238 (1991) 892
- 91KO31 P.E. Koehler and S.M. Graff, Phys. Rev. C44 (1991) 2788
- 91LE07 G. Lévai and J. Cseh, Phys. Rev. C44 (1991) 152
- 91LE08 G. Lévai and J. Cseh, Phys. Rev. C44 (1991) 166
- 91LE33 J.A. Leavitt and L.C. McIntyre Jr., Nucl. Instrum. Methods Phys. Res. B56/57 (1991) 734
- 91MA14 D.M. Manley, B.L. Berman, W. Bertozzi, T.N. Buti, J.M. Finn, F.W. Hersman, C.E. Hyde-Wright, M.V. Hynes, J.J. Kelly and M.A. Kovash et al, Phys. Rev. C43 (1991) 2147
- 91MA41 E. Maglione and L.S. Ferreira, Phys. Lett. B262 (1991) 179
- 91MC01 K.G. McNeill, J.W. Jury, M.N. Thompson, B.L. Berman and R.E. Pywell, Phys. Rev. C43 (1991) 489

- 91MC02 F.D. McDaniel, D.K. Marble, J.L. Duggan, M.R. McNeir, Y.C. Yu, Z.Y. Zhao, C.L. Weathers, P.S. Elliott, R.M. Wheeler, R.P. Chaturvedi et al, Nucl. Instrum. Methods Phys. Res. B53 (1991) 531
- 91MO13 C.L. Morris, Nucl. Phys. A527 (1991) 433C
- 91MU19 A.C. Mueller and R. Anne, Nucl. Instrum. Methods Phys. Res. B56/57 (1991) 559
- 91NA05 O. Naviliat-Cuncic, T.A. Girard, J. Deutsch and N. Severijns, J. Phys. G17 (1991) 919
- 91OR01 N.A. Orr, W. Mittig, L.K. Fifield, M. Lewitowicz, E. Plagnol, Y. Schutz, W.L. Zhan, L. Bianchi,
 A. Gillibert, A.V. Belozyorov et al, Phys. Lett. B258 (1991) 29
- 91OS01 E. Oset and D. Strottman, Phys. Rev. C44 (1991) 468
- 91OS04 A. Osman and A.A. Farra, Nuovo Cim. A104 (1991) 1563
- 91PI09 C.N. Pinder, C.O. Blyth, N.M. Clarke, D. Barker, J.B.A. England, B.R. Fulton, O. Karban,
 M.C. Mannion, J.M. Nelson, C.A. Ogilvie et al, Nucl. Phys. A533 (1991) 25
- 91PI12 Yu.L. Pivovarov and A.A. Shirokov, JETP Lett. 53 (1991) 298
- 91PR03 M.S. Pravikoff, F. Hubert, R. Del Moral, J.-P. Dufour, A. Fleury, D. Jean, A.C. Mueller, K.-H. Schmidt, K. Summerer, E. Hanelt et al, Nucl. Phys. A528 (1991) 225
- 91RE02 P.L. Reeder, R.A. Warner, W.K. Hensley, D.J. Vieira and J.M. Wouters, Phys. Rev. C44 (1991) 1435
- 91RE10 G. Reffo, M.H. Mac Gregor and T. Komoto, Nucl. Instrum. Methods Phys. Res. A307 (1991) 380
- 91RY1A O.G. Ryazhskaya, JETP Lett. 53 (1991) 135
- 91SA1F L.J. Sage, R. Mauersberger and C. Henkel, Astron. and Astrophys. 249 (1991) 31
- 91SAZX E.R.J. Saettler, A.L. Hallin, F.P. Calaprice and M.M. Lowry, Bull. Am. Phys. Soc. 36 (1991) 1300
- 91SU17 M. Suehiro, T. Nozaki, T. Sasaki, H. Suzuki, M. Senda, H. Toyama and S.-I. Ishii, Appl. Radiat. Isot. 42 (1991) 1231
- 91UE01 K. Ueta and G.W. Bund, Phys. Rev. C43 (1991) 2887
- 91ZH19 Z. Zhao and D. Zhou, Chin. J. Nucl. Phys. 13 (1991) 37
- 92AR18 K.P. Artemov, M.S. Golovkov, V.Z. Goldberg, V.V. Pankratov, A.E. Pakhomov, I.N. Serikov and V.A. Timofeev, SOV. J. Nucl. Phys. 55 (1992) 1460
- 92AV03 M.P. Avotina, K.I. Erokhina and I.Kh. Lemberg, Sov. J. Nucl. Phys. 55 (1992) 1777
- 92BE21 M. Berheide, C. Rolfs, U. Schröder and H.P. Trautvetter, Z. Phys. A343 (1992) 483
- 92CA12 A.S. Carnoy, J. Deutsch, R. Prieels, N. Severijns and P.A.Quin, J. Phys. G18 (1992) 823
- 92CO08 D.D. Cohen, G.M. Bailey and N. Dytlewski, Nucl. Instrum. Methods Phys. Res. B64 (1992) 413
- 92DI04 F. Ditrói, S. Takàcs, I. Mahunka, P. Mikecz and GY. Tòth, Nucl. Instrum. Methods Phys. Res. B68 (1992) 166
- 92DO11 V.Yu. Dobretsov, A.B. Dobrotsvetov and S.A. Fayans, Yad. Fiz. 55 (1992) 2126; Sov. J. Nucl.
 Phys. 55 (1992) 1180
- 92FR01 G. Fricke, J. Herberz, Th. Hennemann, G. Mallot, L.A. Schaller, L. Schellenberg, C. Piller and R. Jacot-Guillarmod, Phys. Rev. C45 (1992) 80
- 92GA03 S.B. Gazes, J.E. Mason, R.B. Roberts and S.G. Teichmann, Phys. Rev. Lett. 68 (1992) 150
- 92GA11 M. Gai, Phys. Rev. C45 (1992) R2548
- 92GO10 J. Görres, M. Wiescher, K. Scheller, D.J. Morrissey, B.M. Sherrill, D. Bazin and J.A. Winger, Phys. Rev. C46 (1992) R833
- 92GO14 J. Görres, S. Graff, M. Wiescher, R.E. Azuma, C.A. Barnes and T.R. Wang, Nucl. Phys. A548 (1992) 414

- 92GO1Q N.G. Goncharova, Fiz. Elem. Chastits At. Yadra 23 (1992) 1715; Sov. J. Part. Nucl. 23 (1992) 748
- 92GU11 I.S. Gulkarov, Sov. J. Nucl. Phys. 55 (1992) 1123
- 92GU16 I.S. Gulkarov, M.G. Karimov and M.M. Mansurov, Bull. Russ. Acad. Sci. Phys. 56 (1992) 759;
 Izv. Ross. Akad. Nauk Ser. Fiz. 56:5 (1992) 155
- 92HAZZ K.I. Hahn, N. Bateman, B.J. Lund, S. Utku, A.J. Howard and P.D. Parker, Bull. Am. Phys. Soc. 37 (1992) 868
- 92HE12 E.M. Henley and I.B. Khriplovich, Phys. Lett. B289 (1992) 223
- 92HJ01 M. Hjorth-Jensen, E. Osnes and H. Müther, Ann. Phys. 213 (1992) 102
- 92JI04 M.F. Jiang, R. Machleidt, D.B. Stout and T.T.S. Kuo, Phys. Rev. C46 (1992) 910
- 92JOZZ J.D. Johnson, C.F. Moore, K.W. Johnson, H. Ward, C. Whitley, A. Hussein, R.W. Garnett, L.C. Liu, C.L. Morris, J.M. O'Donnell et al, Bull. Am. Phys. Soc. 37 (1992) 916
- 92KA1G K. Kawade, H. Yamamoto, T. Kobayashi, T. Katoh, T. Iida and A. Takahashi, Report JAERI-M 92-020
- 92LA08 D.W. Lane, Nucl. Instrum. Methods Phys. Res. B64 (1992) 448
- 92LA13 M. Lassaut and R.J. Lombard, Z. Phys. A341 (1992) 125
- 92LA25 M.C. Lagunas-Solar, O.F. Carvacho and P.M. Smith-Jones, Appl. Radiat. Isot. 43 (1992) 1005
- 92LI1K G. Liu, D. Fu and X. Cheng, Chin. Phys. Lett. 9 (1992) 577
- 92MA46 W. Ma, D. Strottman, Q. Wu, L.S. Kisslinger and S. Wang, Chin. J. Nucl. Phys. 14 (1992) 197
- 92MO31 L.B. Moran, J.K. Berkowitz and J.P. Yesinowski, Phys. Rev. B45 (1992) 5347
- 92OS01 E. Osnes and D. Strottman, Phys. Rev. C45 (1992) 662
- 92OS05 E. Oset, M. Khankhasayev, J. Nieves, H. Sarafian and M.J. Vicente-Vacas, Phys. Rev. C46 (1992) 2406
- 92PY1A P. Pyykkö, Z. Naturforsch. A47 (1992) 189
- 92RA1N S. Raman and J.E. Lynn, Beijing Int. Symp. on Fast Neutron Phys., Beijing, 9-13 Sep. 1991 (World Sci., 1992) 107
- 92ROZZ J.G. Ross, C.P. Browne, J. Görres, C. Iliadis, K. Scheller and M. Wiescher, Bull. Am. Phys. Soc. 37 (1992) 869
- 92SA27 T. Sakuda, Prog. Theor. Phys. 87 (1992) 1159
- 92SE08 A.P. Serebrov and N.V. Romanenko, JETP Lett. 55 (1992) 503
- 92TA08 K. Tamura, Y. Oki, Y. Sakamoto and J. Mahalanabis, Nuovo Cim. A105 (1992) 203
- 92TEZY A. Terakawa, T. Tohei, T. Nakagawa, J. Takamatsu, A. Narita, K. Hosomi, H. Orihara, K. Ishii, T. Niizeki, M. Ohura et al, Cyclotron Rad. Center, Tohoku Univ., Ann. Rept. 1991 (1992) 12
- 92TI02 D.R. Tilley, H.R. Weller and G M. Hale, Nucl. Phys. A541 (1992) 1
- 92WA04 T.F. Wang, R.N. Boyd, G.J. Mathews, M.L. Roberts, K.E. Sale, M.M. Farrell, M.S. Islam and G.W. Kolnicki, Nucl. Phys. A536 (1992) 159
- 92WA22 E.K. Warburton and B.A. Brown, Phys. Rev. C46 (1992) 923
- 92YA08 M. Yasue, T. Hasegawa, S.I. Hayakawa, K. Ieki, J. Kasagi, S. Kubono, T. Murakami, K. Nisimura, K. Ogawa. H. Ohnuma et al, Phys. Rev. C46 (1992) 1242
- 92ZH15 Z. Zhao, C.Y. Fu and D.C. Larson, Chin. J. Nucl. Phys. 14 (1992) 67
- 92ZS01 H.-E. Zschau, F. Plier, J. Vogt, G. Otto, H. Duschner, J. Arends, D. Grambole, F. Herrmann,
 R. Klabes, R. Salomonovic et al, Nucl. Instrum. Methods Phys. Res. B68 (1992) 158
- 93AB02 H. Abele and G. Staudt, Phys. Rev. C47 (1993) 742

- 93AB18 S.N. Abramovich, B. Ya. Guzhovsky, L.N. Generalov, S.A. Dunaeva, V.N. Protopopov, A.P. Solodovnikov and V.V. Chulkov, Bull. Russ. Acad. Sci. Phys. 57:10 (1993) 1832; Izv. Akad. Nauk Ser. Fiz. 57:10 (1993) 187
- 93AN08 R.M. Anjos, C. Tenreiro, A. Szanto de Toledo and S.J. Sanders, Nucl. Phys. A555 (1993) 621
- 93AT04 H. Atasoy and S. Dokmen, Nucl. Instrum. Methods Phys. Res. B73 (1993) 5
- 93AU05 G. Audi and A.H. Wapstra, Nucl. Phys. A565 (1993) 1
- 93BO40 I. Bogdanovic, S. Fazinic, M. Jaksic, T. Tadic, O. Valkovic and V. Valkovic, Nucl. Instrum. Methods Phys. Res. B79 (1993) 524
- 93BR12 B.A. Brown, A.E. Champagne, H.T. Fortune and R. Sherr, Phys. Rev. C48 (1993) 1456
- 93CA1K F.P. Calaprice, W.S. Anderson, G.L. Jones and A.R. Young, AIP Conf. Proc. 270 (1993) 153
- 93CH06 W.T. Chou, E.K. Warburton and B.A. Brown, Phys. Rev. C47 (1993) 163
- 93CU01 B. Cujec, Nucl. Phys. A552 (1993) 267
- 93CU05 J.B. Cumming, Y.Y. Chun and P.E. Haustein, Phys. Rev. C48 (1993) 2068
- 93DA17 B. Dasmahapatra, B. Cujec, G. Kajrys and J.A. Cameron, Nucl. Phys. A564 (1993) 314
- 93DA1L S.O.F. Dababneh, K. Toukan and I. Khubeis, Nucl. Instrum. Methods Phys. Res. B83 (1993) 319
- 93DR03 M. Drosg and D.M. Drake, Nucl. Instrum. Methods Phys. Res. B73 (1993) 387
- 93DR04 M. Drosg, D.M. Drake, R.C. Haight and R.O. Nelson, Nucl. Instrum. Methods Phys. Res. B73 (1993) 392
- 93EG04 J.L. Egido, L.M. Robledo and Y. Sun, Nucl. Phys. A560 (1993) 253
- 93EN03 P.M. Endt, At. Data Nucl. Data Tables 55 (1993) 171
- 93EV01 M.V. Evlanov and Yu.O. Vasil'ev, Phys. At. Nucl. 56 (1993) 598
- 93FI08 M.L. Firouzbakht, D.J. Schlyer, S.J. Gatley and A.P. Wolf, Appl. Radiat. Isot. 44 (1993) 1081
- 93GA1G M. Gai, Prog. Part. Nucl. Phys. 30 (1993) 415
- 93GI03 R. Gilman, H.T. Fortune and M. Kagarlis, Phys. Rev. C48 (1993) 366
- 93GO09 T.P. Gorringe, B.L. Johnson, J. Bauer, M.A. Kovash, R. Porter, P. Gumplinger, M.D. Hasinoff, D.F. Measday, B.A. Moftah, D.S. Armstrong et al, Phys. Lett. B309 (1993) 241
- 93HA17 K.I. Hahn, C.R. Brune and P.R. Wrean, Phys. Rev. C48 (1993) 914
- 93HA1D W.C. Haxton, Nucl. Phys. A553 (1993) C397
- 93HI08 M. Hirsch, A. Staudt, K. Muto and H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 53 (1993) 165
- J.D. Johnson, G.R. Burleson, C. Edwards, M. El-Ghossain, M.A. Espy, R. Garnett, A. Hussein,
 K. Johnson, C.F. Moore, C.L. Morris et al, Phys. Rev. C47 (1993) 2571
- 93LA1E D.W. Lane, A.J. Avery, G. Partridge and M. Healy, Nucl. Instrum. Methods Phys. Res. B73 (1993) 583
- 93MA1M R.A. Malaney and G.J. Mathews, Phys. Rep. 229 (1993) 145
- 93MC02 K.G. McNeill, M.N. Thompson, A.D. Bates, J.W. Jury and B.L. Berman, Phys. Rev. C47 (1993) 1108
- 93NA08 S. Nakamura, K. Muto and T. Oda, Phys. Lett. B311 (1993) 15
- 93NI03 J. Nieves and E. Oset, Phys. Rev. C47 (1993) 1478
- 93OS01 E. Oset and D. Strottman, Phys. Rev. Lett. 70 (1993) 146
- 93PA14 S.K. Patra, Nucl. Phys. A559 (1993) 173
- 93PA19 S.K. Patra, Phys. Rev. C48 (1993) 1449
- 93PE19 R.J. Peterson, Acta Phys. Pol. B24 (1993) 1877

- 93PI10 Yu.L. Pivovarov, Izv. Akad. Nauk Ser. Fiz. 57 (1993) 114; Bull. Russ. Acad. Sci. 57 (1993) 867
- 93PO11 N.A.F.M. Poppelier, A.A. Wolters and P.W.M. Glaudemans, Z. Phys. A346 (1993) 11
- 93RE03 G. Reidemeister and F. Michel, Phys. Rev. C47 (1993) R1846
- 93SE1B A.P. Serebrov and N.V. Romanenko, Proc. III Int. Symp. Weak & EM Interactions in Nucl. (WEIN-92), Dubna, 16-22 June 1992 (World Scientific, 1993) 469
- 93SO13 O. Sorlin, J. Phys. G19 (1993) S127
- 93SU08 T. Suzuki, M. Fujimaki, S. Hirenzaki, N. Inabe, T. Kobayashi, T. Kubo, T. Nakagawa, Y. Watanabe, I. Tanihata and S. Shimoura, Phys. Rev. C47 (1993) 2673
- 93SZ02 A. Szanto de Toledo, E.M. Szanto, M. Wotfe, B.V. Carlson, R. Donangelo, W. Bohne, K. Grabish, H. Morgenstern and S. Proshitzki, Phys. Rev. Lett. 70 (1993) 2070
- 93TI07 D.R. Tilley, H.R. Weller and C.M. Cheves, Nucl. Phys. A564 (1993) 1
- 93UTZZ S. Utku, N. Bateman, B.J. Lund, P. Parker, J.G. Ross, J. Gorres, C. Iliadis, M. Wiescher, R.B. Vogelaar and M.S. Smith, Bull. Amer. Phys. Soc. 38 (1993) 983
- 93VO01 P. Vogel and W.E. Ormand, Phys. Rev. C47 (1993) 623
- 93ZH17 M.A. Zhusupov and T.G. Usmanov, Bull. Russ. Acad. Sci. 57 (1993) 63
- 94BA1V P.H. Barker, Nucl. Instrum. Methods Phys. Res. A345 (1994) 445
- 94BE29 H. Beer, Acta Phys. Pol. B25 (1994) 629
- 94BO1H R.N. Boyd, Int. J. Mod. Phys. E1 Suppl. (1994) 249
- 94CI02 O. Civitarese and M. Schvellinger, Phys. Rev. C49 (1994) 1976
- 94EJ01 H. Ejiri, Nucl. Phys. A574 (1994) C311
- 94LU01 D.H. Lu and R.H. Landau, Phys. Rev. C49 (1994) 878
- 94ME02 B. Meltzow, E.K. Warburton, Ch. Ender, J. Gerl, D. Habe, U. Lauff, J. Schirmer, D. Schwalm and P. Thirolf, Phys. Rev. C49 (1994) 743
- 94ME07 D.J. Mercer, J. Rapaport, C.A. Whitten, D. Adams, R. Byrd, X.Y. Chen, A. Fazely, T. Gaussiran, E. Gülmez, C. Goodman et al, Phys. Rev. C49 (1994) 3104
- 94PI1A Yu.L. Pivovarov, Bull. Russ. Acad. Sci. Phys. 58 (1994) 81; Izv. Ross. Akad. Nauk Ser. Fiz. 58: (1994) 94
- 94RA1P G. Raimann, private communication, 28 December 1994
- 94RE01 E.L. Reber, K.W. Kemper, P.V. Green, P.L. Kerr, A.J. Mendez, E.G. Myers and B.G. Schmidt, Phys. Rev. C49 (1994) R1
- 94SC01 K.W. Scheller, J. Gorres, J.G. Ross, M. Wiescher, R. Harkewicz, D.J. Morrissey, B.M. Sherrill,
 M. Steiner, N.A. Orr and J.A. Winger, Phys. Rev. C49 (1994) 46
- 94TA1B C.Y. Tan, Y.Y. Xia, J.T. Liu and X.D. Liu, Phys. Lett. A189 (1994) 379
- 94VE04 J. Vernotte, G. Berrier-Ronsin, J. Kalifa, R. Tamisier and B.H. Wildenthal, Nucl. Phys. A571 (1994) 1
- 95MA1A Z.Q. Mao, H.T. Fortune and A.G. Lacate, Phys. Rev. Lett. 74 (1995) 3760
- 95OZ1A A. Ozawa, G. Raimann, R.N. Boyd, F.R. Chloupek, M. Fujimaki, K. Kimura, T. Kobayashi, J.J. Kolata, S. Kubono, I. Tanihata et al, to be published in Nucl. Phys. A
- 95SE1A R.M. Sellers, D.M. Manley, M.M. Niboh, D.S. Weerasundara, R.A. Lindgren, B.L. Clausen, M. Farkhondeh, B.E. Norum and B.L. Berman, Phys. Rev. C51 (1995) 1926